Skip to main content
Log in

Effect of the Annealing Temperature and Constant Magnetic Field on the Decomposition of Quenched Beryllium Bronze BrB-2

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The effect of the annealing temperature and of a constant magnetic field on decomposition of quenched beryllium bronze BrB-2 is studied by scanning electron microscopy for the first time. A technical bronze alloy BRB-2 is kept at a temperature of 800°C for 0.5 h, quenched in water, and subjected to artificial aging at 325, 350, and 400°C for 1 h under a constant magnetic field of 0.7 T and without it. The decomposition of the alloy proceeds simultaneously by several mechanisms, including a discontinuous (cellular) decomposition. For the first time, a specific decomposition mechanism is reported near the triple junctions and near the grain boundaries. The activation barriers for discontinuous decomposition near the triple junctions in a constant magnetic field decrease, the growth rates noticeably increase, and the size of cells decreases almost twofold. The microstructure data are compared with the results of the microhardness and X-ray diffraction measurements. A possible mechanism of the impact of a constant magnetic field on the discontinuous decomposition in copper-based alloys is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. A. V. Pokoev, D. I. Stepanov, I. S. Trofimov, and V. F. Mazanko, Phys. Stat. Solidi A 137, K1 (1993).

    Article  CAS  Google Scholar 

  2. A. V. Pokoev and D. I. Stepanov, Tech. Phys. Lett. 23, 184 (1997).

    Article  Google Scholar 

  3. R. Sumi, N. Toda, H. Fujii and S. Tsurekawa, Rev. Adv. Mater. Sci. 21, 35 (2009).

    CAS  Google Scholar 

  4. Y. Wu, Y. Lu, X. Zhao, and L. Zuo, Mater. Sci. Forum 706–709, 2372 (2011).

    Google Scholar 

  5. J. V. Osinskaya, A. V. Pokoev, and N. S. Perov, Defect Diffus. Forum 249, 111 (2006).

    CAS  Google Scholar 

  6. D. A. Molodov, C. Gunster, and G. Gottstein, J. Mater. Sci. 49, 3875 (2014).

    Article  CAS  Google Scholar 

  7. D. A. Molodov, P. J. Konijnenberg, L. A. Barrales-Mora, and V. Mohles, J. Mater. Sci. 41, 7853 (2006).

    Article  CAS  Google Scholar 

  8. D. A. Molodov, S. Bhaumik, X. Molodova, and G. Gottstein, Scr. Mater. 54, 2161 (2006).

    Article  CAS  Google Scholar 

  9. D. A. Molodov and N. Bozzolo, Acta Mater. 58, 3568 (2010).

    Article  CAS  Google Scholar 

  10. J. Dong, Z. F. Li, X. Q. Zeng, C. Lu, and W. J. Ding, Mater. Sci. Forum 488–489, 849 (2005).

    Article  Google Scholar 

  11. D. Li, Q. Wang, K. Wang, C. Wu, G. Li, and J. He, Mater. Sci. Forum 706–709, 2910 (2011).

    Google Scholar 

  12. V. I. Alshits, E. V. Darinskaya, M. V. Koldaeva, and E. A. Petrzhik, Crystallogr. Rep. 48 (5), 768 (2003).

    Article  CAS  Google Scholar 

  13. Yu. I. Golovin, Phys. Solid State 46, 789 (2004).

    Article  CAS  Google Scholar 

  14. Yu. V. Osinskaya and A. V. Pokoev, Fiz. Khim. Obrab. Mater., No. 3, 18 (2003).

  15. J. V. Osinskaya, A. V. Pokoev, and N. S. Perov, Defect Diffus. Forum 249, 111 (2006).

    CAS  Google Scholar 

  16. M. Nakagawa, Jpn. J. Appl Phys 4, 760 (1965).

    Article  CAS  Google Scholar 

  17. B. Djurić, M. Jovanović, and D. J. Drobnjak, Metallography 13, 235 (1980).

    Article  Google Scholar 

  18. E. G. Baburaj, U. D. Kulkarni, and E. S. K. Menon, Phase Transitions 1, 171 (1979).

    Article  CAS  Google Scholar 

  19. S. S. Gorelik, Yu. A. Skakov, and L. N. Rastorguev, X‑Ray and Electron-Optical Analysis (Mosk. Inst. Stali Splavov, Moscow, 2002) [in Russian].

    Google Scholar 

  20. T. B. Massalski, Binary Alloy Phase Diagrams (ASM International, Materials Park, OH, 2001).

    Google Scholar 

  21. A. V. Pokoev and J. V. Osinskaya, Defect Diffus. Forum 383, 180 (2018).

    Google Scholar 

  22. R. B. Morgunov, Usp. Fiz. Nauk 174 (2), 131 (2004).

    Article  Google Scholar 

  23. V. I. Alshits, E. V. Darinskaya, I. V. Gektina, and F. F. Lavrentyev, Crystallogr. Rep. 35 (4), 1014 (1990).

    CAS  Google Scholar 

  24. V. I. Alshits, E. V. Darinskaya, and E. A. Petrzhik, Phys. Solid State 34, 155 (1992).

    CAS  Google Scholar 

  25. S. F. Baumann, J. Michael, and D. B. Williams, Acta Mater. 29, 1343 (1981).

    Article  CAS  Google Scholar 

  26. J. W. Cahn, Acta Metall. 7, 18 (1959).

    Article  CAS  Google Scholar 

  27. M. Hillert, Inst. Met., Monogr. Rep. Ser. 33, 231 (1969).

    Google Scholar 

  28. E. Rabkin, A. Gabelev, T. Matsuzaki, and T. Watanabe, Defect Diffus. Forum 237–240, 560 (2005).

    Google Scholar 

  29. P. Zieba and W. Gust, Int. Mater. Rev. 43, 70 (1998).

    Article  CAS  Google Scholar 

  30. S. V. Divinski, J. Ribbe, G. Schmitz, and Chr. Herzig, Acta Mater. 55, 3337 (2007).

    Article  CAS  Google Scholar 

  31. A. Paul, T. Laurila, V. Vuorinen, and S. V. Divinski, Thermodynamics, Diffusion and the Kirkendall Effect in Solids (Springer Intl., Cham, 2014).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. V. Osinskaya or A. V. Pokoev.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Post, R., Osinskaya, J.V., Wilde, G. et al. Effect of the Annealing Temperature and Constant Magnetic Field on the Decomposition of Quenched Beryllium Bronze BrB-2. J. Surf. Investig. 14, 464–472 (2020). https://doi.org/10.1134/S102745102003012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102745102003012X

Keywords:

Navigation