Skip to main content
Log in

Abstract

A two-mirror projection Schwarzschild objective (reduction ratio ×5), formed by two aspheric mirrors and developed as part of upgrading a lithographic workbench with the operating wavelength of 13.4 nm, is proposed. The measurement procedure and results of correction of the shape of the aspheric mirrors and aberrations of the objective lens in the assembled version are described in detail. As a result of several corrections of local errors by an ion beam, a root-mean-square deviation of the shape of the primary mirror of 0.8 nm is achieved. The objective-lens aberrations were equal to 5.4 nm. Simulation of the resolving power of the objective lens, taking into account the measured aberrations, shows that 200-nm-wide strips are resolved with a contrast of 32%, 100 nm—23%, and 30 nm—15%. The reflectivities of the multilayer Mo/Si mirrors with an anti-stress Cr/Y sublayer were 63–65% depending on the coordinate on the mirror. The reasons why it was not able to correct the aberration of the objective lens to the level of 1 nm necessary for achievement of the diffraction limit of resolution are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

REFERENCES

  1. B. Wu and A. Kumar, Appl. Phys. Rev 1, 011 104 (2014).

    Article  Google Scholar 

  2. K. N. Koshelev, V. E. Banine, and N. N. Salashchenko, Phys.-Usp. 50 (7), 741 (2007).

    CAS  Google Scholar 

  3. D. G. Volgunov, I. G. Zabrodin, B. A. Zakalov, et al., Bull. Russ. Acad. Sci.: Phys. 75 (1), 49 (2011).

    Article  CAS  Google Scholar 

  4. N. I. Chkhalo, E. B. Kluenkov, A. E. Pestov, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 603 (1–2), 62 (2009).

    CAS  Google Scholar 

  5. M. M. Barysheva, Yu. A. Vainer, B. A. Gribkov, et al., Bull. Russ. Acad. Sci.: Phys. 76 (2), 163 (2012).

    Article  CAS  Google Scholar 

  6. N. I. Chkhalo, S. A. Churin, A. E. Pestov, et al., Opt. Express 22 (17), 20 094 (2014).

    Article  Google Scholar 

  7. N. I. Chkhalo, S. A. Churin, M. S. Mikhaylenko, et al., Appl. Opt. 55 (6), 1249 (2016).

    Article  CAS  Google Scholar 

  8. A. Keller, S. Facsko, and W. Möller, J. Phys.: Condens. Matter 21, 495 305 (2009).

    Google Scholar 

  9. W. Liao, Y. Dai, X. Xie, and L. Zhou, Opt. Express 22, 377 (2014).

    Article  Google Scholar 

  10. E. J. Teo, N. Toyoda, C. Yang, et al., Appl. Phys. A: Mater. Sci. Process. 117, 719 (2014).

    Article  CAS  Google Scholar 

  11. N. I. Chkhalo, I. A. Kaskov, I. V. Malyshev, et al., Precis. Eng. 48, 338 (2017).

    Article  Google Scholar 

  12. D. Bo, Z. Jianwei, L. Yuling, et al., J. Semicond. 35, 116 001 (2014).

    Article  Google Scholar 

  13. Yu. A. Vainer, M. V. Zorina, A. E. Pestov, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 9 (4), 761 (2015).

    Article  CAS  Google Scholar 

  14. N. I. Chkhalo, N. N. Salashchenko, and M. V. Zorina, Rev. Sci. Instrum. 86, 016 102 (2015).

    Article  Google Scholar 

  15. U. Dinger, F. Bisert, H. Lasser, et al., Proc. SPIE 4146, 35 (2000).

    Article  Google Scholar 

  16. N. I. Chkhalo, A. Yu. Klimov, V. V. Rogov, et al., Rev. Sci. Instrum. 79, 033 107 (2008).

    Article  Google Scholar 

  17. P. P. Naulleau, K. A. Goldberg, S. H. Lee, et al., Appl. Opt. 38 (35), 7252 (1999).

    Article  CAS  Google Scholar 

  18. K. Otaki, K. Ota, I. Nishiyama, T. Yamamoto, Y. Fukuda, and S. Okazaki, J. Vac. Sci. Technol. B 20 (6), 2449 (2002).

    Article  CAS  Google Scholar 

  19. N. B. Voznesensky, E. V. Gavrilov, A. P. Zhevlakov, et al., Tech. Phys. 52 (2), 271 (2007).

    Article  CAS  Google Scholar 

  20. I. V. Malyshev, M. N. Toropov, and N. I. Chkhalo, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 9 (4), 735 (2015).

    Article  CAS  Google Scholar 

  21. N. I. Chkhalo, I. V. Malyshev, A. E. Pestov, et al., Appl. Opt. 55 (3), 619 (2016).

    Article  CAS  Google Scholar 

  22. A. K. Chernyshev, I. V. Malyshev, A. E. Pestov, and N.  I. Chkhalo, in Mater. XXIII Int. Symp. on Nanophysics and Nanoelectronics (Nizhnii Novgorod, 2019), vol. 1, p. 529.

  23. I. G. Zabrodin, B. A. Zakalov, I. A. Kas’kov, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 7 (4), 637 (2013).

    Article  CAS  Google Scholar 

  24. M. S. Bibishkin, D. P. Chekhonadskikh, N. I. Chkhalo, E. B. Klyuenkov, A. E. Pestov, N. N. Salashchenko, L. A. Shmaenok, I. G. Zabrodin, and S. Yu. Zuev, Proc. SPIE 5401, 8 (2004).

    Article  Google Scholar 

  25. P. B. Mirkarimi, Opt. Eng. 38 (7), 1246 (1999).

    Article  CAS  Google Scholar 

  26. S. S. Andreev, N. N. Salashchenko, L. A. Suslov, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 470 (1–2), 162 (2001).

    CAS  Google Scholar 

  27. S. A. Bogachev, N. I. Chkhalo, S. V. Kuzin, et al., Appl. Opt. 55 (9), 2126 (2016).

    Article  CAS  Google Scholar 

  28. A. A. Akhsakhalyan, I. V. Malyshev, N. N. Salashchenko, et al., in Mater. XXIII Int. Symp. on Nanophysics and Nanoelectronics (Nizhnii Novgorod, 2019), vol. 1, p. 430.

  29. M. S. Mikhaylenko, A. E. Pestov, N. I. Chkhalo, and L. A. Goncharov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 13 (2), 182 (2019).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by The Russian Foundation for Basic Research, projects nos. 19-02-00081, 18-02-00588, 18-02-00173, 17-02-00640, 18-32-00149, 18-07-00633, and the Russian Academy of Sciences, program no. 0035-2018-0011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Malyshev.

Additional information

Translated by G. Levina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egorov, A.A., Zorina, M.V., Malyshev, I.V. et al. Projection Objective For an EUV-Lithographic Workbench. J. Surf. Investig. 14, 562–573 (2020). https://doi.org/10.1134/S1027451020030246

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451020030246

Keywords:

Navigation