Skip to main content
Log in

A Study of the Surface Morphology of Microfiltration Membranes of the MFFK and MPS Brands by Atomic-Force- and Scanning-Electron Microscopy

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The methods of atomic-force- and scanning-electron microscopy are used to study the surface morphology of polymeric microfiltration membranes. Commercial membranes of the MFFK (on the basis of a hydrophobic fluoroplastic composite membrane, pore size of 0.45 μm) and MPS (polyethersulfone membrane, pore size of 0.45 μm) brands produced by OOO NPP Tekhnofil’tr (Vladimir, Russia) are used as the objects of study. A mature molasses brew produced by OAO Biokhim (Rasskazovo, Tambov Oblast) is used as the technological fluid for the working samples of MFFK and MPS membranes in the microfiltration process. An analysis of the surface morphology of the microfiltration membranes makes it possible to determine the regions of the location of pores, yeast, and polysaccharides, and the interpore connecting regions. By analyzing microscopic images, the flow lines of the solution to be separated are revealed in the profile hollows on the surface of the working microfiltration membranes. The initial MFFK and MPS membranes are found to have slit pores (0.4–0.6 μm in length and width), and the working membranes are contaminated (clogged) by yeast, polysaccharides, and their fragments, which is associated with residual dynamic membrane formation. The surface-roughness parameters of the working MFFK and MPS membranes are shown to be different: the Ra and Rz values differ by factors of 1.69 and 1.87, respectively; and the Rmax values in the case of oblique and frontal sections differ by factors of 1.67 and 1.05, respectively. This is explained by the specific features accompanying the process of the microfiltration separation of solutions containing yeast, polysaccharides, and their fragments (the presence of an adsorption layer on the membrane surface and cracks in the residual layer of the dynamic membrane, i.e., the clogged layer).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. S. V. Shishkina, E. A. Zhelonkina, and B. A. Ananchenko, Adv. Sci. Khim. Nauki, No. 2, 1 (2017).

    Google Scholar 

  2. V. I. Vasil’eva, N. A. Kranina, M. D. Malykhin, E. M. Akberova, and A. V. Zhiltsova, J. Surf. Invest.: X‑ray, Synchrotron Neutron Tech. 7, 144 (2013).

    Article  Google Scholar 

  3. V. E. Sitnikova, Candidate’s Dissertation in Chemistry (Tver, 2015).

  4. V. V. Kalinin, A. N. Filippov, and D. Yu. Khanukaeva, Tr. RGU Nefti i gaza (NIU) im. I.M. Gubkina. Avtomatizatsiya, modelirovanie i energoobespechenie, No. 1 (266), 129 (2012).

  5. V. V. Kotov, M. V. Grechkina, O. V. Peregonchaya, and A. N. Zyablov, Sorbtsionnye Khromatogr. Protsessy 16 (1), 118 (2016).

    CAS  Google Scholar 

  6. N. A. Zaichenko, V. I. Vasil’eva, O. V. Grigorchuk, A. N. Zyablov, and M. V. Grechkina, Sorbtsionnye Khromatogr. Protsessy 10 (5), 745 (2010).

    Google Scholar 

  7. L. C. Powell, N. Hilal, and C. J. Wright, Desalination 404, 313 (2017).

    Article  CAS  Google Scholar 

  8. S. P. Rudobashta and S. Yu. Makhmud, Khim. Khim. Tekhnol. 53 (1), 108 (2010).

    CAS  Google Scholar 

  9. A. V. Krasikov, V. N. Naraev, and V. L. Krasikov, Izv. S.-Peterb. Gos. Tekhnol. In-ta (Tekhn. Univ.), No. 13, 33 (2012).

  10. V. O. Gritsenko and N. S. Orlov, Membrany, No. 16, 10 (2002).

  11. S. D. Bazhenov, I. L. Borisov, D. S. Bakhtin, A. N. Rybakova, V. S. Khotimskiy, S. P. Molchanov, and V. V. Volkov, Green Energy Environment 1 (3), 235 (2016).

    Google Scholar 

  12. M.A. Trusov, Nanoindustriya, No. 4, 8 (2011).

  13. D. Gudilin, Nanoindustriya, No. 4, 28 (2014).

  14. D. Yu. Khanukaeva and A. N. Filippov, Membr. Membran. Tekhnol. 3 (3), 210 (2013).

    Google Scholar 

  15. N. V. Loza, I. V. Falina, D. S. Popova, and N. A. Kononenko, Sorbtsionnye Khromatogr. Protsessy 16 (5), 663 (2016).

    CAS  Google Scholar 

  16. N. G. Tsirkunova, V. E. Borisenko, L. V. Kukharenko, M. V. Gol’tsev, and S. A. Chizhik, J. Surf. Invest.: X‑ray, Synchrotron Neutron Tech. 3, 730 (2009).

    Article  Google Scholar 

  17. Y. Chen, J. Cai, M. Liu, G. Zeng, Q. Feng, and Z. Chen, Scanning 26 (4), 155 (2004).

    Article  CAS  Google Scholar 

  18. O. A. Kovaleva, S. I. Lazarev, and S. V. Kovalev, Pet. Chem. 57 (11), 974 (2017).

    Article  CAS  Google Scholar 

  19. O. A. Kovaleva and S. V. Kovalev, Pet. Chem. 57 (6), 542 (2017).

    Article  CAS  Google Scholar 

  20. A. V. Stovpyaga and I. N. Lobova, Nauch.-Tekh. Vestn. S.-Peterb. Gos. Univ. Inform. Tekhnol., Mekh. Opt., No. 6 (70), 94 (2010).

  21. V. L. Mironov, Fundamentals of Scanning Probe Microscopy. A Study Guide (In-t fiziki mikrostruktur RAN, Nizhnii Novgorod, 2004) [in Russian].

  22. http://www.vladipor.ru/catalog/show/&cid=015&id=1 (Accessed September 21, 2018).

  23. www.technofilter.ru/prod/filtry_i_oborudovanie_dlya_ laboratornoj_filtracii/filtr_disc/ membrana_ poliefirsulfonovaya_marki_mps/ (Accessed September 21, 2018).

  24. NanoEducator Scanning Probe Microscope. User’s Guide (NT-MDT, Zelenograd, 2008) [in Russian].

  25. E. V. Krisilova, T. V. Eliseeva, and M. V. Grechkina, Sorbtsionnye Khromatogr. Protsessy 10 (1), 103 (2010).

    Google Scholar 

  26. V. V. Litvyak, S. M. Butrim, A. V. Kanarskii, and Z. A. Kanarskaya, Vestn. Tekhnol. Univ. 21 (3), 64 (2018).

    CAS  Google Scholar 

  27. R. Marzban, F. Saberi, and M. M. A. Shirazi, Braz. J. Chem. Eng. 33 (4), 783 (2016).

    Article  CAS  Google Scholar 

  28. O. A. Konovalova, M. E. Sibgatullin, A. N. Montach, N. V. Kolacheva, D. Z. Galimullin, and M. Kh. Salakhov, Uch. Zap. Kazan. Univ., Ser. Fiz.-Mat. Nauki, No. 3, 99 (2010).

    Google Scholar 

  29. M. Ulbricht, W. Ansorge, I. Danielzik, M. Konig, and O. Schuster, Sep. Purif. Technol. 68 (3), 335 (2009).

    Article  CAS  Google Scholar 

  30. Y. Fang and S. J. Duranceau, Membranes 3 (3), 196 (2013).

    Article  CAS  Google Scholar 

  31. D. Saeki, H. Karkhanechi, H. Matsuura, and H. Matsuyama, Desalination 378, 74 (2016).

    Article  CAS  Google Scholar 

  32. O. Akin and F. Temelli, Desalination 278 (1–3), 387 (2011).

    Article  CAS  Google Scholar 

Download references

Funding

This study was carried out within the framework of a State assignment under financial support from the Ministry of Education and Science of Russian Federation (project no. 10.4798.2017/BCh).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Kovalev.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalev, S.V., Lazarev, S.I. & Kovaleva, O.A. A Study of the Surface Morphology of Microfiltration Membranes of the MFFK and MPS Brands by Atomic-Force- and Scanning-Electron Microscopy. J. Surf. Investig. 14, 696–705 (2020). https://doi.org/10.1134/S1027451020040126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451020040126

Keywords:

Navigation