Skip to main content
Log in

Angular Dependences of Silicon Sputtering by Gallium Focused Ion Beam

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Angular dependences of the surface layer composition and the sputtering yield of silicon upon irradiation of the surface with a focused beam of gallium ions with an energy of 30 keV are obtained. The surface composition is analyzed by scanning Auger electron spectroscopy (SAES) and secondary ion mass spectrometry (SIMS). The sputtering yields are determined by measuring the volume of sputtering craters and irradiation doses. It is found that the content of gallium in the surface layer is about 30 at % with incidence angles close to the normal. With incidence angles greater than 30°, the concentration of gallium decreases quite sharply. The angular dependence of the sputtering yield of silicon does not correlate with the content of gallium in the surface layer and is rather well described by the cascade sputtering mechanism proposed by P. Sigmund.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. L. Bruchhaus, P. Mazarov, L. Bischoff, et al., Appl. Phys. Rev. A 4 (1), 011302 (2017). https://doi.org/10.1063/1.4972262

    Article  CAS  Google Scholar 

  2. A. Joshi-Imre and S. Bauerdick, J. Nanotechnol. 2014, 170415 (2014). https://doi.org/10.1155/2014/170415

    Article  CAS  Google Scholar 

  3. Sputtering by Particle Bombardment.Vol 1, Ed. by R. Behrisch (Springer, New York, 1981).

    Google Scholar 

  4. Sputtering by Particle Bombardment.Vol 2, Ed. by R. Behrisch (Springer, New York, 1983).

    Google Scholar 

  5. N. I. Borgardt, A. V. Rumyantsev, R. L. Volkov, et al., Mater. Res. Express 5 (2), 025905 (2018). https://doi.org/10.1088/2053-1591/aaace1

    Article  CAS  Google Scholar 

  6. A. V. Rumyantsev, N. I. Borgardt, and R. L. Volkov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 12, 607 (2018). https://doi.org/10.1134/S1027451018030345

    Article  CAS  Google Scholar 

  7. H. -B. Kim, G. Hobler, A. Steiger, et al., Nanotecnology 18, 245303 (2007). https://doi.org/10.1088/0957-4484/18/24/245303

    Article  CAS  Google Scholar 

  8. N. I. Borgardt and A. V. Rumyantsev, J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 34, 061803–1 (2016). https://doi.org/10.1116/1.4967249

    Article  CAS  Google Scholar 

  9. N. I. Borgardt, R. L. Volkov, A. V. Rumyantcev, et al., Tech. Phys. Lett. 41, 610 (2015). https://doi.org/10.1134/S106378501506019X

    Article  CAS  Google Scholar 

  10. X. Xu, A. D. Della Ratta, et al., J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.–Process., Meas., Phenom. 10 (6), 2675 (1992). https://doi.org/10.1116/1.586024

    Article  CAS  Google Scholar 

  11. L. Frey, C. Lehrer, and H. Ryssel, Appl. Phys., A 76 (7), 1017 (2003). https://doi.org/10.1007/s00339-002-1943-1

    Article  Google Scholar 

  12. S. Lindsey and G. Hobler, Nucl. Instrum. Methods Phys. Res., Sect. B 303, 142 (2013). https://doi.org/10.1016/j.nimb.2012.12.087

    Article  CAS  Google Scholar 

  13. M. Rommel, G. Spolidi, V. Yanev, et al., J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 28 (3), 595 (2010). https://doi.org/10.1116/1.3431085

    Article  CAS  Google Scholar 

  14. H. Gnaser, C. Kallmayer, and H. Oechsner, J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.–Process., Meas., Phenom. 13 (1), 19 (1995). https://doi.org/10.1116/1.587978

    Article  CAS  Google Scholar 

  15. L. Frey, C. Lehrer, S. Petersen, et al., Proc. Int. Conf. Ion Implantation Tech. (Alpbach, Austria, September 17–22,2000) (IEEE, Piscataway, NJ, 2000), p. 695. https://doi.org/10.1109/IIT.2000.924248

  16. H. Gnaser, A. Brodyanski, and B. Reuscher, Surf. Interface Anal. 40 (11), 1415 (2008). https://doi.org/10.1002/sia.2915

    Article  CAS  Google Scholar 

  17. S. Habenicht, K. P. Lieb, J. Koch, et al., Phys. Rev. B 65 (11), 115327–1 (2002). https://doi.org/10.1103/PhysRevB.65.115327

    Article  CAS  Google Scholar 

  18. H. Gnaser, B. Reusher, and A. Zeuner, Nucl. Instrum. Methods Phys. Res., Sect. B 285, 142 (2012). https://doi.org/10.1016/j.nimb.2012.05.028

    Article  CAS  Google Scholar 

  19. M. Wolfhard, TRIDYN. Version 7 (Helmholtz-Zentrum, Dresden-Rossendorf. 2017).

    Google Scholar 

  20. T. Mootz, A. Adriaens, and F. Adams, Int. J. Mass Spectrom. Ion Processes 156, 1 (1996). https://doi.org/10.1016/S0168-1176(96)04410-2

    Article  CAS  Google Scholar 

  21. V. I. Bachurin, N. S. Melesov, A. A. Mironenko, et al., J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 13, 300 (2019). https://doi.org/10.1134/S102745101902023X

    Article  CAS  Google Scholar 

  22. G. Carter, J. S. Colligon, and J. H. Leck, Proc. Phys. Soc. 79 (2), 299 (1962). https://doi.org/10.1088/0370-1328/79/2/308

    Article  Google Scholar 

  23. E. F. Krimmel and H. Pfleiderer, Radiat. Eff. Defects Solids 19 (2), 83 (1973). https://doi.org/10.1080/00337577308232223

    Article  CAS  Google Scholar 

  24. P. Sigmund, Phys. Rev. 184 (2), 383 (1969). https://doi.org/10.1103/PhysRev.184.383

    Article  CAS  Google Scholar 

  25. V. I. Bachurin, P. A. Lepshin, and V. K. Smirnov, Vacuum 56 (4), 241 (2000). https://doi.org/10.1016/S0042-207X(99)00194-3

    Article  CAS  Google Scholar 

  26. K. Wittmaack, Surf. Interface Anal. 29 (10), 721 (2000). https://doi.org/10.1002/1096-9918(200010)29:10<721::AID-SIA916>3.0.CO;2-Q

    Article  CAS  Google Scholar 

Download references

Funding

This study was performed in accordance with a State assignment of the Ministry of Education and Science of the Russian Federation the Valiev Institute of Physics and Technology, Yaroslavl Branch, Russian Academy of Sciences, within the framework of topic no. 0066-2019-0003 and using equipment of the Center for Collective Use Diagnostics of Microstructures and Nanostructures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Bachurin.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bachurin, V.I., Zhuravlev, I.V., Pukhov, D.E. et al. Angular Dependences of Silicon Sputtering by Gallium Focused Ion Beam. J. Surf. Investig. 14, 784–790 (2020). https://doi.org/10.1134/S1027451020040229

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451020040229

Keyword:

Navigation