Skip to main content
Log in

Microscopic and X-Ray Analysis of the Surface Changes in Aluminum Alloys during Friction

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The effect of the introduction of additives of low-melting alloying elements in antifriction aluminum alloys on a change in the surface after tribological tests is estimated. Compositions are described and sample preparation is performed. For the study, a combination of electron microscopy methods (with elemental analysis) and probe microscopy (with the modes of spreading current and thermal-conductivity analysis) are used. It is shown that after heat treatment, the phase components acquire a globular shape in both alloys. Grain deformation, soft phase release to the surface, and mass transfer take place during the friction process. The hard phase components of the shoe material act as an abrasive, while mass transfer forms a film of secondary structures of variable thickness on the roller (under certain conditions, the film becomes thicker, which can lead to scuffing). The analysis of sections allows the presence of a near-surface layer (50–100 µm thick) with a modified structure to be established. The SPM method is used to establish that the thermal conductivity map at the micro level correlates with the electrical conductivity map. X-ray structural analysis of the surfaces carried out before and after tribological tests showed that the lattice spacing decreased, lattice deformation increased, and texture appeared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. B. N. Arzamasov, T. V. Solov’eva, S. A. Gerasimov et al., Handbook on Construction Materials (Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Moscow, 2005) [in Russian].

  2. B. S. Ünlü and E. Atik, Mater. Des., No. 30, 1381 (2009). https://doi.org/10.1016/j.matdes.2008.06.069

  3. A. E. Mironov, I. S. Gershman, A. V. Ovechkin, and E. I. Gershman, J. Frict. Wear 36, 257 (2015). https://doi.org/10.3103/S1068366615030095

    Article  Google Scholar 

  4. N. A. Bushe, A. E. Mironov, and T. F. Markova, Zheleznye dorogi mira, No. 11, 44 (2003).

  5. A. Mironov, P. Podrabinnik, and E. Kuznetsov, Mater. Today: Proc. 11 (Part 1), 197 (2019). https://doi.org/10.1016/j.matpr.2018.12.131

    Article  CAS  Google Scholar 

  6. N. A. Belov, A. O. Mikhailina, A. N. Alabin, and O. O. Stolyarova, Met. Sci. Heat Treat. 58, 195 (2016). https://doi.org/10.1007/s11041-016-9988-5

    Article  CAS  Google Scholar 

  7. N. A. Belov, O. O. Stolyarova, and A. O. Yakovleva, Russ. Metall. (Engl. Transl.) 2016, 198 (2016). https://doi.org/10.1134/S0036029516030034

  8. B. Ya. Sachek, A. M. Mezrin, T. I. Muravyeva, et al., J. Frict. Wear 36, 103 (2015). https://doi.org/10.3103/S1068366615020142

    Article  Google Scholar 

  9. B. Ya. Sachek, A. M. Mezrin, T. I. Muravyeva, and O. O. Stolyarova, J. Frict. Wear 37, 469 (2016). https://doi.org/10.3103/S1068366616050160

    Article  Google Scholar 

  10. O. O. Stolyarova, T. I. Murav’eva, D. L. Zagorskii, and N. A. Belov, Fiz. Mezomekh., 19 (5), 105 (2016).

    Google Scholar 

  11. A. O. Yakovleva, N. A. Belov, T. A. Bazlova, and I. V. Shkalei, Phys. Met. Metallogr. 119, 35 (2018). https://doi.org/10.1134/S0031918X18010167

    Article  CAS  Google Scholar 

  12. I. I. Kurbatkin and T. I. Murav’eva, Trenie Smazka Mash. Mekh., No. 1, 38 (2012).

  13. I. G. Goryacheva, I. I. Kurbatkin, and N. A. Bushe, Zavod. Lab., Diagn. Mater. 74 (4), 51 (2008).

    CAS  Google Scholar 

  14. Metal Science: Textbook,vol. 2. Heat Treatment. Alloys, Ed. by V. S. Zolotorevskii (Mosk. Inst. Stali Splavov, Moscow, 2009) [in Russian].

    Google Scholar 

  15. O. O. Shcherbakova, T. I. Murav’eva, and D. L. Zagorskii, Pis’ma o Materialakh 8 (2), 123 (2018). https://doi.org/10.22226/2410-3535-2018-2-123-128

Download references

ACKNOWLEDGMENTS

We are grateful to Yu. Bobrov (NT-MDT, Zelenograd) for carrying out a part of the SPM measurements, A.M. Mezrin (Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences) for performing the tribological tests.

Funding

The study was partially supported by a Grant of the President of the Russian Federation project no. MK-871.2018.8 № АААА-А18-118080290023-08 (sample preparation and microscopic studies), and the Russian Foundation for Basic Research, project no. 18-38-00289 mol_a (X-ray structural studies).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. O. Shcherbakova or T. I. Muravyeva.

Additional information

Translated by N. Semenova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shcherbakova, O.O., Muravyeva, T.I., Shkalei, I.V. et al. Microscopic and X-Ray Analysis of the Surface Changes in Aluminum Alloys during Friction. J. Surf. Investig. 14, 830–840 (2020). https://doi.org/10.1134/S1027451020040333

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451020040333

Keywords:

Navigation