Skip to main content
Log in

α-FeSi2 as a Buffer Layer for β-FeSi2 Growth: Analysis of Orientation Relationships in Silicide/Silicon, Silicide/Silicide Heterointerfaces

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

In this manuscript, we attempt to clarify the capability of utilisation of α-FeSi2 nanocrystals as a buffer layer for growth of monocrystalline/high-quality β-FeSi2 direct-gap semiconductor from the point of view of the crystal lattice misfits and near coincidence site (NCS) lattices. Iron silicides-based nanostructures have a wide spectrum of possible industrial applications in different fields. Mainly, interest in these functional materials is caused by their ecological safety and Earth’s core abundance that give us the opportunity for greener future with highly effective electronic devices. β-FeSi2 phase due to its allowed direct transition with energy close to 0.87 eV can be used as active material in light emission diodes (LED). Utilisation of buffer layers between silicon substrate and give one more tool to engineer the band structure of semiconducting β‑FeSi2 phase. We attempt to clarify the capability of the utilisation of the α-FeSi2 phase as a buffer layer for the growth of β-FeSi2 direct-gap semiconductor from the point of view of the crystal lattice misfits and near coincidence site (NCS) lattices. Possible β-FeSi2/α-,γ-,s-FeSi2/Si orientation relationships (ORs) and habit planes were examined with crystallogeometrical approaches and compared with β-FeSi2/Si ones. The lowest interplanar and interatomic spacing misfits between silicon lattice and a silicide one are observed for the pair of s-FeSi2{011}[200]/Si{022}[100] at room temperature and equal to –0.57%. The least interplanar and interatomic spacing misfit of 1.7 and 1.88%, respectively, for β-FeSi2/Si, can be decreased as low as –0.67 (interplanar) and 0.87 (interatomic) % by placing an α-FeSi2 layer between silicon and β-FeSi2 phase. It is stated that the growth of metastable γ-FeSi2 is also favourable on silicon due to low interplanar and interatomic spacing misfit (–0.77%) and a higher density of NCS in comparison with s-FeSi2. Design and technological procedure for the synthesis of possible β-FeSi2/α-FeSi2/Si heterostructure have been proposed based on the results obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. I. A. Tarasov, Z. I. Popov, S. N. Varnakov, M. S. Molokeev, A. S. Fedorov, I. A. Yakovlev, et al., JETP Lett. 99, 565 (2014). https://doi.org/10.1134/S0021364014100105

    Article  CAS  Google Scholar 

  2. S. G. Ovchinnikov, S. N. Varnakov, S. A. Lyashchenko, I. A. Tarasov, I. A. Yakovlev, E. A. Popov, et al., Phys. Solid State 58, 2277 (2016). https://doi.org/10.1134/S1063783416110299

    Article  CAS  Google Scholar 

  3. I. A. Yakovlev, I. A. Tarasov, and S. A. Lyashchenko, J. Magn. Magn. Mater. 440, 161 (2016). https://doi.org/10.1016/j.jmmm.2016.12.051

    Article  CAS  Google Scholar 

  4. H. Tokushige, T. Endo, K. Hiidome, K. Saiki, S. Kitamura, T. Katsuyama, et al., Jpn. J. Appl. Phys. 54, 07JB03 (2015). https://doi.org/10.7567/JJAP.54.07JB03

    Article  CAS  Google Scholar 

  5. Z. Liu, S. Wang, N. Otogawa, Y. Suzuki, M. Osamura, Y. Fukuzawa, et al., Sol. Energy Mater. Sol. Cells. 90, 276 (2006). https://doi.org/10.1016/j.solmat.2005.03.014

    Article  CAS  Google Scholar 

  6. Y. Gao, H. W. Liu, Y. Lin, and G. Shao, Thin Solid Films 519, 8490 (2011). https://doi.org/10.1016/j.tsf.2011.05.030

    Article  CAS  Google Scholar 

  7. M. Mohebali, Y. Liu, L. Tayebi, J. S. Krasinski, and D. Vashaee, Renewable Energy 74, 940 (2015). https://doi.org/10.1016/j.renene.2014.08.059

    Article  CAS  Google Scholar 

  8. W. Li, C. Wen, M. Yamashita, T. Nonomura, Y. Hayakawa, and H. Tatsuoka, J. Cryst. Growth 340, 51 (2012). https://doi.org/10.1016/j.jcrysgro.2011.11.059

    Article  CAS  Google Scholar 

  9. J. Theis, R. Bywalez, S. Küpper, A. Lorke, and H. Wiggers, J. Appl. Phys. 117, 054303 (2015). https://doi.org/10.1063/1.4906500

    Article  CAS  Google Scholar 

  10. D. Leong, M. Harry, K. J. Reeson, and K. P. Homewood, Nature 387, 686 (1997). https://doi.org/10.1038/42667

    Article  CAS  Google Scholar 

  11. Y. Maeda, Appl. Surf. Sci. 254, 6242 (2008). https://doi.org/10.1016/j.apsusc.2008.02.127

    Article  CAS  Google Scholar 

  12. D. Z. Chi, Thin Solid Films 537, 1 (2013). https://doi.org/10.1016/j.tsf.2013.04.020

    Article  CAS  Google Scholar 

  13. N. G. Galkin, E. A. Chusovitin, D. L. Goroshko, A. V. Shevlyagin, A. A. Saranin, T. S. Shamirzaev, et al., Appl. Phys. Lett. 101, 163501 (2012). https://doi.org/10.1063/1.4758485

    Article  CAS  Google Scholar 

  14. Y. Ando, A. Imai, K. Akiyama, Y. Terai, and Y. Maeda, Thin Solid Films 515, 8133 (2007). https://doi.org/10.1016/j.tsf.2007.02.024

    Article  CAS  Google Scholar 

  15. Y. Maeda, T. Tatsumi, Y. Kawakubo, Y. Noguchi, H. Kobayashi, K. Narumi, et al., Phys. Status Solidi C 11, 1626 (2014). https://doi.org/10.1002/pssc.201400039

    Article  CAS  Google Scholar 

  16. A. V. Shevlyagin, D. L. Goroshko, E. A. Chusovitin, S. A. Balagan, S. A. Dotcenko, K. N. Galkin, et al., J. Appl. Phys. 121, 113101 (2017). https://doi.org/10.1063/1.4978372

    Article  CAS  Google Scholar 

  17. M. Suzuno, T. Koizumi, and T. Suemasu, Appl. Phys. Lett. 94, 213509 (2009). .https://doi.org/10.1063/1.3147168

    Article  CAS  Google Scholar 

  18. Roithner LaserTechnik GmbH, Price list 03/2017. http://www.roithner-laser.com/pricelist.pdf

  19. J. W. Hwang, B. K. Kim, S. J. Lee, M. H. Bae, and J. C. Shin, Curr. Appl. Phys. 15, S35 (2015). https://doi.org/10.1016/j.cap.2015.04.014

    Article  Google Scholar 

  20. D. Van Dam, D. R. Abujetas, R. Paniagua-Domínguez, J. A. Sánchez-Gil, E. P. A. M. Bakkers, J. E. M. Haverkort, et al., Nano Lett. 15, 4557 (2015). https://doi.org/10.1021/acs.nanolett.5b01135

    Article  CAS  Google Scholar 

  21. S.-W. Hung, P. -H. Yeh, L. -W. Chu, C.-D. Chen, L.-J. Chou, Y. -J. Wu, et al., J. Mater. Chem. 21, 5704 (2011). .https://doi.org/10.1039/c1jm10232j

    Article  CAS  Google Scholar 

  22. S. Liang, R. Islam, D. J. Smith, and P. A. Bennett, J. Cryst. Growth 295, 166 (2006). https://doi.org/10.1016/j.jcrysgro.2006.05.076

    Article  CAS  Google Scholar 

  23. K. Yamamoto, H. Kohno, S. Takeda, and S. Ichikawa, Appl. Phys. Lett. 89, 83107 (2006). https://doi.org/10.1063/1.2338018

    Article  CAS  Google Scholar 

  24. L. Chen and W. Wu, Jpn. J. Appl. Phys. 54, 07JA04 (2015). https://doi.org/10.7567/JJAP.54.07JA04

    Article  CAS  Google Scholar 

  25. G. Shao, Y. Gao, X. H. Xia, and M. Milosavljević, Thin Solid Films 519, 8446 (2011). https://doi.org/10.1016/j.tsf.2011.05.036

    Article  CAS  Google Scholar 

  26. Y. Gao, G. Shao, R. S. Chen, Y. T. Chong, and Q. Li, Solid State Commun. 149, 97 (2009). https://doi.org/10.1016/j.ssc.2008.11.002

    Article  CAS  Google Scholar 

  27. H. von Känel, K. A. Mäder, E. Müller, N. Onda, and H. Sirringhaus, Phys. Rev. B: Condens. Matter 45, 13807 (1992). https://doi.org/10.1103/PhysRevB.45.13807

    Article  Google Scholar 

  28. I. Goldfarb, Y. Camus, M. Dascalu, F. Cesura, R. Chalasani, and A. Kohn, Phys. Rev. B 96, 45415 (2017). https://doi.org/10.1103/PhysRevB.96.045415

    Article  Google Scholar 

  29. H. von Känel, N. Onda, H. Sirringhaus, E. Müller-Gubler, S. Goncalves-Conto, and C. Schwarz, Appl. Surf. Sci. 70–71, 559 (1993). https://doi.org/10.1016/0169-4332(93)90579-Z

    Article  Google Scholar 

  30. A. L. V. de Parga, J. de la Figuera, C. Ocal, and R. Miranda, Ultramicroscopy 42–44, 845 (1992). https://doi.org/10.1016/0304-3991(92)90367-S

    Article  Google Scholar 

  31. D. Das, J. C. Mahato, B. Bisi, B. Satpati, and B. N. Dev, Appl. Phys. Lett. 105, 191606 (2014). https://doi.org/10.1063/1.4901815

    Article  CAS  Google Scholar 

  32. G. Cao, D. J. Singh, X. -G. Zhang, G. Samolyuk, L. Qiao, C. Parish, et al., Phys. Rev. Lett. 114, 147202 (2015). https://doi.org/10.1103/PhysRevLett.114.147202

    Article  CAS  Google Scholar 

  33. N. Jedrecy, A. Waldhauer, M. Sauvage-Simkin, R. Pinchaux, and Y. Zheng, Phys. Rev. B 49, 4725 (1994). https://doi.org/10.1103/PhysRevB.49.4725

    Article  CAS  Google Scholar 

  34. J. Chevrier, P. Stocker, L. T. Vinh, J. M. Gay, and J. Derrien, Europhys. Lett. 22, 449 (1993). .https://doi.org/10.1209/0295-5075/22/6/009

    Article  CAS  Google Scholar 

  35. X. W. Lin, M. Behar, J. Desimoni, H. Bernas, J. Washburn, and Z. Liliental-Weber, Appl. Phys. Lett. 63, 105 (1993). https://doi.org/10.1063/1.109727

    Article  CAS  Google Scholar 

  36. S. S. Pan, C. Ye, X. M. Teng, H. T. Fan, and G. H. Li, Phys. Status Solidi A 204, 3316 (2007). https://doi.org/10.1002/pssa.200622438

    Article  CAS  Google Scholar 

  37. C. Detavernier, C. Lavoie, J. Jordan-Sweet, and A. S. Özcan, Phys. Rev. B 69, 174106 (2004). https://doi.org/10.1103/PhysRevB.69.174106

    Article  CAS  Google Scholar 

  38. J. K. Tripathi, G. Markovich, and I. Goldfarb, Appl. Phys. Lett. 102, 251604 (2013). https://doi.org/10.1063/1.4812239

    Article  CAS  Google Scholar 

  39. B.-X. Xu, Y. Zhang, H. -S. Zhu, D.-Z. Shen, and J.-L. Wu, Mater. Lett. 59, 833 (2005). https://doi.org/10.1016/j.matlet.2004.10.060

    Article  CAS  Google Scholar 

  40. Z.-Q. Zou, X. Li, X.-Y. Liu, K.-J. Shi, and X.-Q. Guo, Appl. Surf. Sci. 399, 200 (2017). https://doi.org/10.1016/j.apsusc.2016.12.056

    Article  CAS  Google Scholar 

  41. V. E. Borisenko, Semiconducting Silicides (Springer, Berlin, 2000). https://doi.org/10.1007/978-3-642-59649-0

    Book  Google Scholar 

  42. J. H. Van Der Merwe, G. J. Shiflet, and P. M. Stoop, Metall. Trans. A 22, 1165 (1991). https://doi.org/10.1007/BF02660648

    Article  Google Scholar 

  43. S. Shao, J. Wang, and A. Misra, J. Appl. Phys. 116, 023508 (2014). https://doi.org/10.1063/1.4889927

    Article  CAS  Google Scholar 

  44. P. M. Kelly and M. X. Zhang, Metall. Mater. Trans. A 37, 833 (2006). https://doi.org/10.1007/s11661-006-0056-4

    Article  Google Scholar 

  45. M. X. Zhang and P. M. Kelly, Acta Mater. 53, 1073 (2005). https://doi.org/10.1016/j.actamat.2004.11.007

    Article  CAS  Google Scholar 

  46. Q. Liang and W. T. Reynolds, Metall. Mater. Trans. A 29, 2059 (1998). https://doi.org/10.1007/s11661-998-0032-2

    Article  Google Scholar 

  47. B. Aronsson, D. H. Templeton, S. Rundqvist, E. Varde, and G. Westin, Acta Chem. Scand. 14, 1414 (1960). https://doi.org/10.3891/acta.chem.scand.14-1414

    Article  CAS  Google Scholar 

  48. H. Yamane and T. Yamada, J. Alloys Compd. 476, 282 (2009). https://doi.org/10.1016/j.jallcom.2008.08.078

    Article  CAS  Google Scholar 

  49. X. F. Gu, T. Furuhara, and W. Z. Zhang, J. Appl. Crystallogr. 49, 1099 (2016). https://doi.org/10.1107/S1600576716006075

    Article  CAS  Google Scholar 

  50. N. Miyano, K. Ameyama, and G. C. Weatherly, ISIJ Int. 40, S199 (2000).

    Article  CAS  Google Scholar 

  51. T. Furuhara, T. Maki, and K. Oishi, Metall. Mater. Trans. A 33, 2327 (2002). https://doi.org/10.1007/s11661-002-0356-2

    Article  Google Scholar 

  52. F. Ye, W. Z. Zhang, and D. Qiu, Acta Mater. 54, 5377 (2006). https://doi.org/10.1016/j.actamat.2006.07.006

    Article  CAS  Google Scholar 

  53. A. R. S. Gautam and J. M. Howe, Philos. Mag. 91, 3203 (2011). https://doi.org/10.1080/14786435.2011.573817

    Article  CAS  Google Scholar 

  54. X. Wang, H. Huang, X. Gu, Y. Li, Z. Jia, and Q. Liu, J. Appl. Crystallogr. 49, 1223 (2016). https://doi.org/10.1107/S160057671600933X

    Article  CAS  Google Scholar 

  55. I. A. Yakovlev, I. A. Tarasov, M. V. Rautskii, and M. N. Volochaev, Semiconductors 52, 654 (2018). https://doi.org/10.1134/S1063782618050330

    Article  Google Scholar 

  56. I. A. Tarasov, I. A. Yakovlev, M. S. Molokeev, M. Rautskii, I. V. Nemtsev, S. N. Varnakov, and S. G. Ovchinnikov, Mater. Lett. 168, 90 (2016). https://doi.org/10.1016/j.matlet.2016.01.033

    Article  CAS  Google Scholar 

  57. I. A. Tarasov, N. N. Kosyrev, S. N. Varnakov, S. G. Ovchinnikov, S. M. Zharkov, V. A. Shvets, et al., Tech. Phys. 57, 1225 (2012). .https://doi.org/10.1134/S1063784212090241

    Article  CAS  Google Scholar 

  58. I. A. Tarasov, M. A. Visotin, A. S. Aleksandrovsky, N. N. Kosyrev, I. A. Yakovlev, M. S. Molokeev, A. V. Lukyanenko, A. S. Krylov, A. S. Fedorov, S. N. Varnakov, and S. G. Ovchinnikov, J. Magn. Magn. Mater. 440, 144 (2017). https://doi.org/10.1016/j.jmmm.2016.12.084

    Article  CAS  Google Scholar 

  59. C. Detavernier, C. Lavoie, J. Jordan-Sweet, and A. S. Özcan, Phys. Rev. B. 69, 174106 (2004). https://doi.org/10.1103/PhysRevB.69.174106

    Article  CAS  Google Scholar 

  60. M. Imai, Y. Isoda, and H. Udono, Intermetallics 67, 75 (2015). https://doi.org/10.1016/j.intermet.2015.07.015

    Article  CAS  Google Scholar 

  61. F. Zhang and S. Saxena, Scr. Mater. 54, 1375 (2006). https://doi.org/10.1016/j.scriptamat.2005.11.076

    Article  CAS  Google Scholar 

  62. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169

    Article  CAS  Google Scholar 

  63. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993). https://doi.org/10.1103/PhysRevB.47.558

    Article  CAS  Google Scholar 

  64. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994). https://doi.org/10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  65. J. D. Pack and H. J. Monkhorst, Phys. Rev. B 16, 1748 (1977). https://doi.org/10.1103/PhysRevB.16.1748

    Article  Google Scholar 

  66. L. L. Boyer, Phys. Rev. Lett. 42, 584 (1979). https://doi.org/10.1103/PhysRevLett.42.584

    Article  CAS  Google Scholar 

  67. R. E. Allen, F. W. De Wette, and A. Rahman, Phys. Rev. 179, 887 (1969). https://doi.org/10.1103/PhysRev.179.887

    Article  CAS  Google Scholar 

  68. A. Togo and I. Tanaka, Scr. Mater. 108, 1 (2015). https://doi.org/10.1016/j.scriptamat.2015.07.021

    Article  CAS  Google Scholar 

  69. A. Togo, L. Chaput, I. Tanaka, and G. Hug, Phys. Rev. B: Condens. Matter Mater. Phys. 81, 1 (2010). .https://doi.org/10.1103/PhysRevB.81.174301

    Article  CAS  Google Scholar 

  70. A. Jain and A. J. H. McGaughey, Comput. Mater. Sci. 110, 115 (2015). https://doi.org/10.1016/j.commatsci.2015.08.014

    Article  CAS  Google Scholar 

  71. J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, et al., Phys. Rev. Lett. 100, 136406 (2008). .https://doi.org/10.1103/PhysRevLett.100.136406

    Article  CAS  Google Scholar 

  72. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  73. H. Ibach, Phys. Status Solidi B 31, 625 (1969). https://doi.org/10.1002/pssb.19690310224

    Article  CAS  Google Scholar 

  74. Y. Okada and Y. Tokumaru, J. Appl. Phys. 56, 314 (1984). https://doi.org/10.1063/1.333965

    Article  CAS  Google Scholar 

  75. U. Starke, W. Weiss, M. Kutschera, R. Bandorf, and K. Heinz, J. Appl. Phys. 91, 6154 (2002). https://doi.org/10.1063/1.1467397

    Article  CAS  Google Scholar 

Download references

FUNDING

The work was supported by Russian Foundation for Basic Research, Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science to the research project no. 18-42-243013. The work was partially supported by the Ministry of Education and Science of the Russian Federation and by Siberian Branch of the Russian Academy of Sciences (Project II.8.70).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Bondarev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasov, I.A., Bondarev, I.A. & Romanenko, A.I. α-FeSi2 as a Buffer Layer for β-FeSi2 Growth: Analysis of Orientation Relationships in Silicide/Silicon, Silicide/Silicide Heterointerfaces. J. Surf. Investig. 14, 851–861 (2020). https://doi.org/10.1134/S1027451020040357

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451020040357

Keywords:

Navigation