Skip to main content
Log in

Heteroligand Cu(II) Complexes with 2-Halogenopyridines: Crystal Structure and Features of Halogen⋯Halogen Contacts in the Solid State

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

By the reaction of a CuCl22H2O solution in ethanol with a 2-bromopyridine (2-BrPy) solution in ethanol heteroligand complex [Cu(2-BrPy)2(H2O)Cl2] (1) is obtained and its structure is determined by single crystal XRD. The energies of non-covalent halogen⋯halogen interactions in the crystal structures of 1 and previously obtained [Cu(2-ClPy)2(H2O)Cl2] (2) are estimated by quantum chemical calculations within the density functional theory at the M06/DZP-DKH level and the QTAIM topological analysis of the electron density distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Metrangolo, J. S. Murray, T. Pilati, P. Politzer, G. Resnati, and G. Terraneo. Cryst. Growth Des., 2011, 11, 4238–4246.

    CAS  Google Scholar 

  2. V. Amendola, G. Bergamaschi, M. Boiocchi, N. Fusco, M. V. La Rocca, L. Linati, E. Lo Presti, M. Mella, P. Metrangolo, and A. Miljkovic. RSC Adv., 2016, 6, 67540–67549.

    CAS  Google Scholar 

  3. G. Cavallo, P. Metrangolo, T. Pilati, G. Resnati, M. Sansotera, and G. Terraneo. Chem. Soc. Rev., 2010, 39, 3772.

    CAS  PubMed  Google Scholar 

  4. G. Cavallo, P. Metrangolo, R. Milani, T. Pilati, A. Priimagi, G. Resnati, and G. Terraneo. Chem. Rev., 2016, 116, 2478–2601.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Y. V. Torubaev, I. V. Skabitskiy, P. Rusina, A. A. Pasynskii, D. K. Rai, and A. Singh. CrystEngComm, 2018, 20, 2258–2266.

    CAS  Google Scholar 

  6. J. J. Brown, A. J. Brock, M. C. Pfrunder, J. P. Sarju, A. Z. Perry, A. C. Whitwood, D. W. Bruce, and J. C. McMurtrie, J. K. Clegg. Aust. J. Chem., 2017, 70, 594–600.

    CAS  Google Scholar 

  7. V. V. Sivchik, A. I. Solomatina, Y.-T. Chen, A. J. Karttunen, S. P. Tunik, P.-T. Chou, and I. O. Koshevoy. Angew. Chem., Int. Ed., 2015, 54, 14057–14060.

    CAS  Google Scholar 

  8. S. A. Adonin, M. N. Sokolov, and V. P. Fedin. Coord. Chem. Rev., 2018, 367, 1–17.

    CAS  Google Scholar 

  9. Y. V. Torubaev, I. V. Skabitskiy, A. V. Pavlova, and A. A. Pasynskii. New J. Chem., 2017, 41, 3606–3611.

    CAS  Google Scholar 

  10. M. Wolff, A. Okrut, and C. Feldmann. Inorg. Chem., 2011, 50, 11683–11694.

    CAS  PubMed  Google Scholar 

  11. R. Brückner, H. Haller, S. Steinhauer, C. Müller, and S. Riedel. Angew. Chem., Int. Ed., 2015, 54, 15579–15583.

    Google Scholar 

  12. H. Haller, M. Hog, F. Scholz, H. Scherer, I. Krossing, and S. Riedel. Z. Naturforsch. B, 2013, 68, 1103–1107.

    CAS  Google Scholar 

  13. M. Bulatova, A. A. Melekhova, A. S. Novikov, D. M. Ivanov, and N. A. Bokach. Z. Kristallogr. — Cryst. Mater., 2018, 233, 371–377.

    CAS  Google Scholar 

  14. M. A. Kinzhalov, M. V. Kashina, A. S. Mikherdov, E. A. Mozheeva, A. S. Novikov, A. S. Smirnov, D. M. Ivanov, M. A. Kryukova, A. Y. Ivanov, S. N. Smirnov, V. Y. Kukushkin, and K. V. Luzyanin. Angew. Chem., Int. Ed., 2018, 57, 12785–12789.

    CAS  Google Scholar 

  15. A. S. Novikov, D. M. Ivanov, M. S. Avdontceva, and V. Y. Kukushkin. CrystEngComm, 2017, 19, 2517–2525.

    CAS  Google Scholar 

  16. L. E. Zelenkov, D. M. Ivanov, M. S. Avdontceva, A. S. Novikov, and N. A. Bokach. Z. Kristallogr. — Cryst. Mater., 2019, 234, 9–17.

    CAS  Google Scholar 

  17. G. M. Espallargas, A. J. Florence, J. van de Streek, and L. Brammer. CrystEngComm, 2011, 13, 4400.

    CAS  Google Scholar 

  18. G. M. Espallargas, L. Brammer, J. van de Streek, K. Shankland, A. J. Florence, and H. Adams. J. Am. Chem. Soc., 2006, 128, 9584–9585.

    Google Scholar 

  19. F. M. A. Noa, S. A. Bourne, H. Su, and L. R. Nassimbeni. Cryst. Growth Des., 2017, 17, 1876–1883.

    Google Scholar 

  20. L. Brammer, G. M. Espallargas, and H. Adams. CrystEngComm, 2003, 5, 343–345.

    Google Scholar 

  21. J. M. Clemente-Juan, E. Coronado, G. M. Espallargas, H. Adams, and L. Brammer. CrystEngComm, 2010, 12, 2339.

    CAS  Google Scholar 

  22. F. Zordan and L. Brammer. Cryst. Growth Des., 2006, 6, 1374–1379.

    CAS  Google Scholar 

  23. F. Zordan, L. Brammer, and P. Sherwood. J. Am. Chem. Soc., 2005, 127, 5979–5989.

    CAS  PubMed  Google Scholar 

  24. P. C. Farris, A. D. Wall, J. E. Chellali, C. L. Chittim, C. P. Landee, M. M. Turnbull, and J. L. Wikaira. J. Coord. Chem., 2018, 71, 2487–2509.

    CAS  Google Scholar 

  25. R. Puttreddy, C. von Essen, A. Peuronen, M. Lahtinen, and K. Rissanen. CrystEngComm, 2018, 20, 1954–1959.

    CAS  Google Scholar 

  26. G. M. Espallargas, J. van de Streek, P. Fernandes, A. J. Florence, M. Brunelli, K. Shankland, and L. Brammer. Angew. Chem., Int. Ed., 2010, 49, 8892–8896.

    Google Scholar 

  27. C. A. Krasinski, B. L. Solomon, F. F. Awwadi, C. P. Landee, M. M. Turnbull, and J. L. Wikaira. J. Coord. Chem., 2017, 70, 914–935.

    CAS  Google Scholar 

  28. K. C. Shortsleeves, L. N. Dawe, C. P. Landee, and M. M. Turnbull. Inorg. Chim. Acta, 2009, 362, 1859–1866.

    CAS  Google Scholar 

  29. F. F. Awwadi, M. M. Turnbull, M. I. Alwahsh, and S. F. Haddad. New J. Chem., 2018, 42, 10642–10650.

    CAS  Google Scholar 

  30. R. Puttreddy, C. von Essen, and K. Rissanen. Eur. J. Inorg. Chem., 2018, 2018, 2393–2398.

    CAS  Google Scholar 

  31. Z.-M. Jin, Z.-G. Li, B. Tu, Z.-L. Shen, and M.-L. Hu. Acta Crystallogr., Sect. E: Struct. Rep. Online, 2005, 61, m2566–m2567.

    CAS  Google Scholar 

  32. G. M. Sheldrick. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71, 3–8.

    Google Scholar 

  33. Y. Zhao and D. G. Truhlar. Theor. Chem. Acc., 2008, 120, 215–241.

    CAS  Google Scholar 

  34. C. L. Barros, P. J. P. de Oliveira, F. E. Jorge, A. Canal Neto, and M. Campos. Mol. Phys., 2010, 108, 1965–1972.

    CAS  Google Scholar 

  35. R. F. W. Bader. Chem. Rev., 1991, 91, 893–928.

    CAS  Google Scholar 

  36. T. Lu and F. Chen. J. Comput. Chem., 2012, 33, 580–592.

    PubMed  Google Scholar 

  37. Z. M. Bikbaeva, A. S. Novikov, V. V. Suslonov, N. A. Bokach, and V. Y. Kukushkin. Dalton Trans., 2017, 46, 10090–10101.

    CAS  PubMed  Google Scholar 

  38. K. Kolari, J. Sahamies, E. Kalenius, A. S. Novikov, V. Y. Kukushkin, and M. Haukka. Solid State Sci., 2016, 60, 92–98.

    CAS  Google Scholar 

  39. S. V. Baykov, U. Dabranskaya, D. M. Ivanov, A. S. Novikov, and V. P. Boyarskiy. Cryst. Growth Des., 2018, 18, 5973–5980.

    CAS  Google Scholar 

  40. M. V. Il’in, D. S. Bolotin, A. S. Novikov, I. E. Kolesnikov, and V. V. Suslonov. Inorg. Chim. Acta, 2019, 490, 267–271.

    Google Scholar 

  41. V. K. Burianova, D. S. Bolotin, A. S. Mikherdov, A. S. Novikov, P. P. Mokolokolo, A. Roodt, V. P. Boyarskiy, D. Dar’in, M. Krasavin, V. V. Suslonov, A. P. Zhdanov, K. Y. Zhizhin, and N. T. Kuznetsov. New J. Chem., 2018, 42, 8693–8703.

    CAS  Google Scholar 

  42. J. V. Handy, G. Ayala, and R. D. Pike. Inorg. Chim. Acta, 2017, 456, 64–75.

    CAS  Google Scholar 

  43. F. A. Mautner and M. A. S. Goher. Polyhedron, 1992, 11, 2537–2542.

    CAS  Google Scholar 

  44. J. A. Moreland and R. J. Doedens. Inorg. Chem., 1978, 17, 674–679.

    CAS  Google Scholar 

  45. F. F. Awwadi, R. D. Willett, S. F. Haddad, and B. Twamley. Cryst. Growth Des., 2006, 6, 1833–1838.

    CAS  Google Scholar 

  46. F. Awwadi, R. D. Willett, and B. Twamley. Cryst. Growth Des., 2011, 11, 5316–5323.

    CAS  Google Scholar 

  47. A. Bondi. J. Phys. Chem., 1966, 70, 3006–3007.

    CAS  Google Scholar 

  48. M. Mantina, A. C. Chamberlin, R. Valero, C. J. Cramer, and D. G. Truhlar. J. Phys. Chem. A, 2009, 113, 5806–5812.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. E. Espinosa, E. Molins, and C. Lecomte. Chem. Phys. Lett., 1998, 285, 170–173.

    CAS  Google Scholar 

  50. M. V. Vener, A. N. Egorova, A. V. Churakov, and V. G. Tsirelson. J. Comput. Chem., 2012, 33, 2303–2309.

    CAS  PubMed  Google Scholar 

  51. E. V. Bartashevich and V. G. Tsirelson. Russ. Chem. Rev., 2014, 83, 1181–1203.

    CAS  Google Scholar 

  52. D. M. Ivanov, A. S. Novikov, I. V. Ananyev, Y. V. Kirina, and V. Y. Kukushkin. Chem. Commun., 2016, 52, 5565–5568.

    CAS  Google Scholar 

Download references

Funding

The work was supported by RFBR (poject No. 20-33-70010 “Stability”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Adonin.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Russian Text © The Author(s), 2020, published in Zhurnal Strukturnoi Khimii, 2020, Vol. 61, No. 5, pp. 753–759.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adonin, S.A., Novikov, A.S., Smirnova, Y.K. et al. Heteroligand Cu(II) Complexes with 2-Halogenopyridines: Crystal Structure and Features of Halogen⋯Halogen Contacts in the Solid State. J Struct Chem 61, 712–718 (2020). https://doi.org/10.1134/S0022476620050066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476620050066

Keywords

Navigation