Skip to main content
Log in

Structure and Paramagnetic Properties of Graphene Nanoplatelets Prepared from Biopolymers Using Self-Propagating High-Temperature Synthesis

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

The article is based on the materials of the Third Russian Conference “Graphene: molecule and 2D crystal”, 5–9 August 2019, Novosibirsk

Abstract

We propose a novel approach to prepare graphene nanoplatelets from cyclic biopolymers using self-propagating high-temperature synthesis. The synthesized graphene nanoplatelets have micrometer-scale linear sizes and extended specific surface areas (up to 620 m2/g). The number of nanoplatelets in a stack does not exceed five. The number of structural defects can be estimated by estimating the concentration of paramagnetic spins in graphene nanoplatelets using the EPR method. The properties of synthesized graphene nanoplatelets make them possibly applicable to be used as sorbents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Md. Sajibul Alam Bhuyan, Md. Nizam Uddin, … Sayed Shafayat Hossain

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov. Science, 2004, 306, 666.

    Article  CAS  Google Scholar 

  2. L. Zhou, L. Fox, M. Włodek, L. Islas, A. Slastanova, E. Robles, O. Bikondoa, R. Harniman, N. Fox, M. Cattelan, and W. Briscoe. Carbon, 2018, 136, 255.

    Article  CAS  Google Scholar 

  3. J. G. Um, Y. S. Jun, H. Alhumade, H. Krithivasan, G. Lui, and A. Yu. RSC Adv., 2018, 8(31), 17091.

    Article  CAS  Google Scholar 

  4. A. Li, C. Zhang and Y. F. Zhang. Polymers, 2017, 9(9), 437.

    PubMed Central  Google Scholar 

  5. Z. Hu, G. Tong, D. Lin, C. Chen, H. Guo, J. Xu, and L. Zhou. Mater. Sci. Technol., 2016, 32(9), 930–953.

    Article  CAS  Google Scholar 

  6. A. V. Eletskii, I. M. Iskandarova, A. A. Knizhnik, and D. N. Krasikov. Phys. Usp., 2011, 54, 227.

    Article  CAS  Google Scholar 

  7. A. B. Volkova, E. V. Rezchikova, and V. A. Shakhnov. Eng. J.: Sci. Innovation, 2013, 18(6), 11.

    Google Scholar 

  8. A. E. Sytschev and A. G. Merzhanov. Russ. Chem. Rev., 2004, 73(2), 147.

    Article  CAS  Google Scholar 

  9. C. Li, X. Zhang, K. Wang, X. Sun, G. Liu, J. Li, H. Tian, and J. Li. Adv. Mater., 2017, 29(7), 1604690.

    Article  Google Scholar 

  10. A. Huczko, O. Łabędź, A. Dąbrowska, M. Kurcz, M. Bystrzejewski, H. Lange, P. Baranowski, L. Stobiński, A. Małolepszy, and A. Okotrub. Phys. Status Solidi B, 2015, 252(11), 2412.

    Article  CAS  Google Scholar 

  11. L. Wang, B. Wei, P. Dong, Q. Miao, Z. Liu, F. Xu, J. Wu, J. Lou, R. Vajtai, and W. Fei. Mater. Des., 2016, 92, 462.

    Article  CAS  Google Scholar 

  12. V. Yu. Osipov, T. Enoki, K. Takai, K. Takahara, M. Endo, T. Hayashi, Y. Hishiyama, Y. Kaburagi, and A. Ya. Vul’. Carbon, 2006, 44, 1225.

    Article  Google Scholar 

  13. V. Yu. Osipov, A. I. Shames, T. Enoki, K. Takai, M. Endo, T. Hayashi, Y. Kaburagi, and A. Ya. Vul’. Diamond Relat. Mater., 2009, 18(2–3), 220.

    Article  Google Scholar 

  14. V. Yu. Osipov, A. I. Shames, T. Enoki, K. Takai, M. Endo, Y. Kaburagi, and A. Ya. Vul’. Diamond Relat. Mater., 2010, 19(5–6), 492.

    Article  Google Scholar 

  15. D. W. Boukhvalov, V. Yu. Osipov, A. I. Shames, K. Takai, T. Hayashi, and T. Enoki. Carbon, 2016, 107, 800.

    Article  CAS  Google Scholar 

  16. A. M. Panich, A. I. Shames, M. I. Tsindlekht, V. Yu. Osipov, M. Patel, K. Savaram, and H. He. J. Phys. Chem. C, 2016, 120, 3042.

    Article  CAS  Google Scholar 

  17. K. Savaram, M. Li, K. Tajima, K. Takai, T. Hayashi, G. Hall, E. Garfunkel, and V. Yu. Osipov, H. He. Carbon, 2018, 139, 861.

    Article  CAS  Google Scholar 

  18. G. Wang, X. Shen, J. Yao, and J. Park. Carbon, 2009, 47(8), 2049.

    Article  CAS  Google Scholar 

  19. F. Akbar, M. Kolahdouz, S. Larimian, B. Radfar, and H. H. Radamson. J. Mater. Sci.: Mater. Electron., 2015, 26(7), 4347.

    CAS  Google Scholar 

  20. S. Kashyap, S. Mishra, and S. K. Behera. J. Nanopart., 2014, Article ID 640281, 1.

  21. V. I. Sysoev, L. G. Bulusheva, I. P. Asanov, Y. V. Shubin, and A. V. Okotrub. Phys. Status Solidi B, 2015, 253, 2492.

    Article  Google Scholar 

  22. A. L. Patterson. Phys. Rev., 1939, 56, 978.

    Article  CAS  Google Scholar 

  23. V. Yu. Osipov, A. V. Baranov, V. A. Ermakov, T. L. Makarova, L. F. Chungong, A. I. Shames, K. Takai, T. Enoki, Y. Kaburagi, M. Endo, and A. Ya. Vul. Diamond Relat. Mater., 2011, 20(2), 205.

    Article  Google Scholar 

  24. A. C. Ferrari and J. Robertson. Phys. Rev. B, 2000, 61(20), 14095.

    Article  CAS  Google Scholar 

  25. M. M. Lucchese, F. Stavale, E. H. Martins Ferreira, C. Vilani, M. V. O. Moutinho, Rodrigo B. Capaz, C. A. Achete, and A. Jorio. Carbon, 2010, 48(5), 1592.

    Article  CAS  Google Scholar 

  26. P. T. Araujoa, M. Terrones, and M. S. Dresselhaus. Mater. Today, 2012, 5(3), 98.

    Article  Google Scholar 

  27. A. Merlen, J. G. Buijnsters, and C. Pardanaud. Coatings, 2017, 7(10), 153.

    Article  Google Scholar 

Download references

Funding

The reported study was funded by RFBR, project number 18-29-24129mk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Vozniakovskii.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Russian Text © The Author(s), 2020, published in Zhurnal Strukturnoi Khimii, 2020, Vol. 61, No. 5, pp. 869–878.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vozniakovskii, A.A., Voznyakovskii, A.P., Kidalov, S.V. et al. Structure and Paramagnetic Properties of Graphene Nanoplatelets Prepared from Biopolymers Using Self-Propagating High-Temperature Synthesis. J Struct Chem 61, 826–834 (2020). https://doi.org/10.1134/S0022476620050200

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476620050200

Keywords

Navigation