Skip to main content
Log in

Effect of Ag2+ and C+ Ion Implantation on the Surface Physicochemical Properties of Polylactic Acid, Hydroxyapatite, and Their Composites

  • EFFECT OF ENERGY FLUXES ON MATERIALS
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

We investigated the surface physicochemical properties of biomedical materials (made from polylactic acid (PLA), hydroxyapatite (HA), and composites based on PLA and HA with the mass ratio of 80/20 and 60/40, respectively) modified by C+ and Ag2+ ion implantation at the dose of 1 × 1016 cm–2 at the accelerating voltage of 20 kV. It was found that ion implantation leads to greater crystallite size and crystallinity of materials, larger pore volume in surface layers, enhanced surface conductivity, and reduced microhardness of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Diao, H., Si, Y., Zhu, A., Ji, L., and Shi, H., Surface modified nano-hydroxyapatite/poly(lactide acid) composite and its osteocyte compatibility, Mater. Sci. Eng., C, 2012, vol. 32, pp. 1796–1801.

    Article  CAS  Google Scholar 

  2. Peng, F., Yu, X., and Wei, M., In vitro cell performance on hydroxyapatite particles/poly(L-lactic acid) nanofibrous scaffolds with an excellent particle along nanofiber orientation, Acta Biomater., 2011, vol. 7, pp. 2585–2592.

    Article  CAS  Google Scholar 

  3. Toth, A., Bell, T., Bertoti, I., Mohai, M., and Zelei, B., Surface modification of polyethylene by low keV ion beams, Nucl. Instrum. Methods Phys. Res.,Sect. B, 1999, vol. 148, pp. 1131–1135.

    CAS  Google Scholar 

  4. Evelyn, A.L., Ila, D., Zimmerman, R.L., Bhat, K., Poker, D.B., Hensley, D.K., Klatt, C., Kalbitzer, S., Just, N., and Drevet, C., Ion beam modification of PES, PS and PVC polymers, Nucl. Instrum. Methods Phys. Res.,Sect. B, 1999, vol. 148, pp. 1141–1145.

    CAS  Google Scholar 

  5. Sokullu Urkac, E., Oztarhan, A., Tihminlioglu, F., Kaya, N., Ila, D., Muntele, C., Budak, S., Oks, E., Nikolaev, A., Ezdesir, A., and Tek, Z., Thermal characterization of Ag and Ag+ ion implanted ultra-high molecular weight polyethylene (UHMWPE), Nucl. Instrum. Methods Phys. Res.,Sect. B, 2007, vol. 261, pp. 699–703.

    CAS  Google Scholar 

  6. Pukhova, I.V., Savkin, K.P., Laput, O.A., Lytkina, D.N., Botvin, V.V., Medovnik, A.V., and Kurzina, I.A., Effects of ion- and electron-beam treatment on surface physicochemical properties of polylactic acid, Appl. Surf. Sci., 2017, vol. 422, pp. 856–862.

    Article  CAS  Google Scholar 

  7. Shapovalova, Y., Lytkina, D., Rasskazova, L., Zhuk, I., Gudima, A., Filimoshkin, A., Korotchenko, N., Kurzina, I., and Kzhyshkowska, J., Preparation of biocompatible composites based on poly-L-lactide/hydroxyapatite and investigation of their anti-inflammatory activity, Key Eng. Mater., 2016, vol. 683, pp. 475–480.

    Article  Google Scholar 

  8. Lytkina, D., Berezovskaya, A., Korotchenko, N., Kurzina, I., and Kozik, V., Preparation of composite materials based on hydroxyapatite and lactide and glycolide copolymer, AIP Conf. Proc., 2017, vol. 1899, art. ID 020015.

    Article  Google Scholar 

  9. Korotchenko, N.M. and Rasskazova, L.A., RF Patent 2507151, Byull. Izobret., 2014, no. 20.

  10. Brown, I.G., The metal vapor vacuum arc (MEVVA) high current ion source, IEEE Trans. Nucl. Sci., 1985, vol. 32, no. 5, pp. 1723.

    Article  Google Scholar 

  11. Kurzina, I.A., Pukhova, I.V., and Savkin, K.P., Vacuum-arc ion source with a magnetic separator of beams for modifying the surface properties of polymeric materials, Izv. Vyssh. Uchebn. Zaved., Fiz., 2016, vol. 59, no. 9-3, pp. 253–256.

  12. Nanostructure Control of Materials, Hannik, R.H.J. and Hill, A.J., Eds., Amsterdam: Elsevier, 2006.

    Google Scholar 

  13. Pavlov, L.P., Metody izmereniya parametrov poluprovodnikovykh materialov (Measuring the Parameters of Semiconductor Materials), Moscow: Vysshaya Shkola, 1987.

  14. Calabia, B.P., Tokiwa, Y., Ugwu, C.U., and Aiba, S., Biodegradation, in Poly(lactic Acid): Synthesis, Structures, Properties, Processing, and Applications, Auras, R., Lim, L.T., Selke, S.E.M., and Tsuji, H., Eds., Hoboken, NJ: Wiley, 2010, pp. 423–430.

    Google Scholar 

  15. Malik, B. and Panigrakhi, S., Effect of some MeV proton irradiation on cross-section of polymer amorphization, Prikl. Fiz., 2012, no. 1, pp. 20–25.

  16. Olvera-Gracia, M. and Aguilar-Hernandez, J.R., Conductivity and crystallinity of polyethylene oxide/polyaniline microfibers obtained by electrospinning, J. Appl. Res. Technol., 2014, vol. 12, no. 3, pp. 598–601.

    Article  Google Scholar 

  17. Kim, S. and Nho, Y.C., Effect of radiation on ultra high molecular weight polyethylene (UHMWPE), in Controlling of Degradation Effects in Radiation Processing of Polymers, Vienna: Int. At. Energy Agency, 2009, pp. 85–95.

    Google Scholar 

  18. Fedotov, A.Yu., Komlev, V.S., Teterina, A.Yu., Sirotinkin, V.P., Shamrai, V.F., Fadeeva, I.V., and Barinov, S.M., Preparation of octacalcium phosphate from calcium carbonate powder, Inorg. Mater., 2013, vol. 49, no. 11, pp. 1148–1151.

    Article  CAS  Google Scholar 

Download references

Funding

This work was carried out as part of a scientific project supported by the Program for Competitiveness Improvement of the Tomsk State University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. A. Laput, I. V. Vasenina or I. A. Kurzina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by K. Lazarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laput, O.A., Vasenina, I.V. & Kurzina, I.A. Effect of Ag2+ and C+ Ion Implantation on the Surface Physicochemical Properties of Polylactic Acid, Hydroxyapatite, and Their Composites. Inorg. Mater. Appl. Res. 11, 507–513 (2020). https://doi.org/10.1134/S2075113320030296

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113320030296

Keywords:

Navigation