Skip to main content
Log in

Combustion of a Dust/Gas Mixture Consisting of Particles of Irradiated Nuclear Graphite

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The paper describes the problem of the formation of dust/gas mixtures during the work related to the dismantling of graphite stack during the decommissioning of a uranium-graphite reactor. The amount of stored energy in the irradiated graphite elements of the reactor was experimentally determined. The influence of the Wigner energy release process on the combustion of a dust/gas mixture consisting of particles of irradiated nuclear graphite is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Wickham, A., Steinmetz, H.-J., O’Sullivan, P., and Ojovan, M.I., Updating irradiated graphite disposal: Project “GRAPA” and the international decommissioning network Ojovan, J. Environ. Radioact., 2017, vol. 171, pp. 34–40.

    Article  CAS  Google Scholar 

  2. Fedosovskii, M.E., Dunaev, V.I., Gurin, D.A., Slobodchikov, A.V., and Kharakhnin, S.N., Development of technological equipment for RBMK service-life extension, At. Energy, 2018, vol. 123, no. 5, pp. 314–320.

    Article  CAS  Google Scholar 

  3. Chernetskiy, M.Yu., Burdukov, A.P., Butakov, E.B., Anufriev, I.S., and Strizhak, P.A., Using ignition of coal dust produced in different types of mechanical treatment under conditions of rapid heating, Combust., Explos. Shock Waves (Engl. Transl.), 2016, vol. 52, no. 3, pp. 326–328.

  4. Lemkowitz, S.M. and Pasman, H.J., A review of the fire and explosion hazards of particulates, KONA Powder Part. J., 2014, no. 31, pp. 53–81. https://doi.org/10.14356/kona.2014010

  5. Mishra, D.P. and Azam, S., Experimental investigation on effects of particle size, dust concentration and dust-dispersion-air pressure on minimum ignition temperature and combustion process of coal dust clouds in a G–G furnace, Fuel, 2018, vol. 227, pp. 424–433.

    Article  CAS  Google Scholar 

  6. Addai, E., Gabel, D., and Krause, U., Experimental investigations of the minimum ignition energy and the minimum ignition temperature of inert and combustible dust cloud mixtures, J. Hazard. Mater., 2016, vol. 307, pp. 302–311.

    Article  CAS  Google Scholar 

  7. Turkevich, L.A., Dastidar, A.G., Hachmeister, Z., and Lim, M., Potential explosion hazard of carbonaceous nanoparticles: explosion parameters of selected materials, J. Hazard. Mater., 2015, vol. 295, pp. 97–103.

    Article  CAS  Google Scholar 

  8. Farazi, S., Hinrichs, J., Davidovich, M., Falkenstein, T., Bode, M., Kang, S., Attili, A., and Pitsch, H., Numerical investigation of coal particle stream ignition in oxy-atmosphere, Fuel, 2019, vol. 241, pp. 477–287.

    Article  CAS  Google Scholar 

  9. Wang, C., Zhang, Y., Wang, P., Zhang, J., Du, Y., and Che, D., Effects of silicoaluminate oxide and coal blending on combustion behaviors and kinetics of Zhundong coal under oxy-fuel condition, J. Therm. Anal. Calorim., 2018, vol. 134, no. 3, pp. 1975–1986.

    Article  CAS  Google Scholar 

  10. Sanchirico, R., Russo, P., Sarli, V.D., and Di Benedetto, A., On the explosion and flammability behavior of mixtures of combustible dusts, Process Saf. Environ. Prot., 2015, vol. 94, pp. 410–419.

    Article  CAS  Google Scholar 

  11. Glushkov, D.O., Kuznetsov, G.V., and Strizhak, P.A., Experimental and numerical study of coal dust ignition by a hot particle, Appl. Therm. Eng., 2018, vol. 133, pp. 774–784. https://doi.org/10.1016/j.applthermaleng.2018.01.049

    Article  Google Scholar 

  12. Hosseinzadeh, S., Berghmans, J., Degreve, J., and Verplaetsen, F., A model for the minimum ignition energy of dust clouds, Process Saf. Environ. Prot., 2019, vol. 121, pp. 43–49.

    Article  CAS  Google Scholar 

  13. Cloney, C.T., Ripley, R.C., Pegg, M.J., and Amyotte, P.R., Laminar combustion regimes for hybrid mixtures of coal dust with methane gas below the gas lower flammability limit, Combust. Flame, 2018, vol. 198, pp. 14–23.

    Article  CAS  Google Scholar 

  14. Glushkov, D.O., Strizhak, P.A., and Vershinina, K.Yu., Minimum temperature for sustainable ignition of coal water slurry containing petrochemicals, Appl. Therm. Eng., 2016, vol. 96, pp. 534–546.

    Article  CAS  Google Scholar 

  15. Glushkov, D.O., Kuznetsov, G.V., and Strizhak, P.A., Mathematical simulation of the ignition of coal particles in airflow, Solid Fuel Chem., 2015, vol. 49, no. 2, pp. 73–79.

    Article  CAS  Google Scholar 

  16. Khitrin, L.N. and Tsukhanova, O.A., Carbon combustion, Usp. Fiz. Nauk, 1950, vol. 42, no. 3, pp. 311–330.

    Article  Google Scholar 

  17. Delyagin, G.N., General laws of coal-particle combustion, Combust., Explos. Shock Waves (Engl. Transl.), 1983, vol. 19, no. 4, pp. 475–478.

  18. Zel’dovich, Ya.B., Theory of flame propagation, Zh. Fiz. Khim., 1948, vol. 22, pp. 27–49.

    Google Scholar 

  19. Frolov, S.M., Semenov, I.V., Komissarov, P.V., Utkin, P.S., and Markov, V.V., Reduction of the deflagration-to-detonation transition distance and time in a tube with regular shaped obstacles, Dokl. Phys. Chem., 2007, vol. 415, no. 2, pp. 209–213.

    Article  CAS  Google Scholar 

  20. Fedorov, A.V. and Khmel’, T.A., Mathematical simulation of heterogeneous detonation of coal dust in oxygen with allowance for the ignition stage, Combust., Explos. Shock Waves (Engl. Transl.), 2005, vol. 41, no. 1, pp. 78–87.

  21. Pavliuk, A.O., Zagummenov, V.S., Kotlyarevskiy, S.G., and Bespala, E.V., Thermodynamic simulation of equilibrium composition of reaction products at dehydration of a technological channel in a uranium-graphite reactor, Therm. Eng., 2018, vol. 65, no. 1, pp. 51–56.

    Article  CAS  Google Scholar 

  22. Jordan, M.S.L., Ramsay, P., Verrall, K., van Staveren, T.O., Brown, M., Davies, B., Tzelepi, A., and Metcalfe, M., Determining the electrical and thermal resistivities of radiolytically-oxidised nuclear graphite by small sample characterization, J. Nucl. Mater., 2018, vol. 507, pp. 68–77.

    Article  CAS  Google Scholar 

  23. Bespala, E.V., Pavliuk, A.O., and Kotlyarevskiy, S.G., Analysis of Winger energy release process in graphite stack of shut-down uranium-graphite reactor, IOP Conf. Ser.: Mater. Sci. Eng., 2015, vol. 93, pp. 1–5.

  24. Dostov, A.I., A method of calculating the rate of release of Wigner energy in heat conduction problems for irradiated graphite, High Temp., 2005, vol. 43, no. 2, pp. 259–265.

    Article  CAS  Google Scholar 

  25. Bespala, E.V., Pavlyuk, A.O., Kotlyarevskii, S.G., Novoselov, I.Yu., and Bespala, Yu.R., Heat treatment of irradiated graphite in an oxidizing atmosphere, Solid Fuel Chem., 2018, vol. 52, no. 5, pp. 328–335.

    Article  CAS  Google Scholar 

  26. Gidaspov, V.Yu., Moskalenko, O.A., and Severina, N.S., Numerical study of the effect of water droplets on the structure of a detonation wave in a hydrogen-air gas mixture, High Temp., 2018, vol. 56, no. 5, pp. 751–757.

    Article  CAS  Google Scholar 

  27. Bubenchikov, A.M., Starchenko, A.V., and Ushakov, V.M., Numerical simulation of the combustion of pulverized coal in boiler combustors, Combust., Explos. Shock Waves (Engl. Transl.), 1995, vol. 31, no. 2, pp. 153–160.

  28. Glushkov, D.O., Strizhak, P.A., and Vysokomornaya, O.V., Numerical research of heat and mass transfer during low-temperature ignition of a coal particle, Therm. Sci., 2015, vol. 19, no. 1, pp. 285–294.

    Article  Google Scholar 

  29. Syrodoy, S.V., Kuznetsov, G.V., and Salomatov, V.V., The influence of heat transfer conditions on the parameters characterizing the ignition of coal-water fuel particles, Therm. Eng., 2015, vol. 62, no. 10, pp. 703–707.

    Article  CAS  Google Scholar 

  30. Poluektov, P.P., Kashcheev, V.A., Ustinov, O.A., Musatov, N.D., Yakunin, S.A., Karlina, O.K., and Diordii, M.N., Physicochemical aspects of reactor graphite incineration, At. Energy, 2014, vol. 116, no. 2, pp. 105–109.

    Article  CAS  Google Scholar 

  31. Svetushkov, N.N., Numerical simulation of heat treatment processes, based on integral approach, Materialovedenie, 2018, no. 6, pp. 31–36.

  32. Belogurova, T.P. and Bastrygina, S.V., Hardening of ash-cement compositions using waste from the combustion of coal-water fuel, Materialovedenie, 2014, no. 5, pp. 19–26.

  33. Azam, S. and Mishra, D.P., Effects of particle size, dust concentration and dust-dispersion-air pressure on rock dust inertant requirement for coal dust explosion suppression in underground coal mines, Process Saf. Environ. Prot., 2019, vol. 126, pp. 35–43.

    Article  CAS  Google Scholar 

  34. Wang, S., Shi, Z., Peng, X., Zhang, Y., Cao, W., Chen, W., and Li, J., Effect of the ignition delay time on explosion severity parameters of coal dust/air mixtures, Powder Technol., 2019, vol. 342, pp. 509–516.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Bespala.

Additional information

Translated by V. Selikhanovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonenko, M.V., Chubreev, D.O., Bespala, E.V. et al. Combustion of a Dust/Gas Mixture Consisting of Particles of Irradiated Nuclear Graphite. Inorg. Mater. Appl. Res. 11, 908–914 (2020). https://doi.org/10.1134/S2075113320040048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113320040048

Keywords:

Navigation