Skip to main content
Log in

Modeling Self-Organization Processes in Crystal-Forming Systems: Suprapolyedic Na18Hg157 Precursor Clusters for the Self-Assembly of the Na99Hg468hP567 Crystal Structure

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Using computer methods (the ToposPro software package), the combinatorial-topological analysis and modeling of the self-assembly of the Na99Hg468hP567 crystal structure are carried out with the following parameters of the hexagonal cell: a = b = 39.703 Å, c = 9.681 Å, V = 13216 Å3, space group P-6, and 132 crystallographically independent atoms. Three supracluster precursors K175-A, K175-B, and K175-C composed of Na18Hg157 are identified in the form of three connected gear rings of Na-polyhedra with symmetry g = –6. The symmetry and topological code for the self-assembly of the 3D structures from the precursor nanoclusters is reconstructed. In the [001] direction, the K175 supracluster precursors are linked by Hg6 gear rings and Na spacers to form columns. In the columns, the distance between supraclusters K175 determines the value of the translational vector modulus c = 9.681 Å. When a skeleton is formed in the local environment of a column of K175-C supraclusters (centered at a height of z = 0), six columns of alternating K175-A and K175-B supraclusters are located with an offset of 1/2 in the [001] direction. The distance between equivalent columns from K175 clusters corresponds to the value of the translation vector modules a and b.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Inorganic Crystal Structure Database (ICSD). Germany: Fachinformationszentrum Karlsruhe, USA: US Nat. Inst. Standard Technol..

  2. Wendorff, M. and Roehr, C., Polar binary Zn/Cd-rich intermetallics: Synthesis, crystal andelectronic structure of A (Zn/Cd)13 (A = alkali/alkaline earth) and Cs1.34Zn16, J. Alloys Compd., 2006, vol. 421, pp. 24–34.

    Article  CAS  Google Scholar 

  3. Zintl, E. and Haucke, E.Z., Elektrochem. konstitution der intermetallischen phasen NaZn13, K Zn13, K Cd13, RbCd13 und Cs Cd13, Angew. Phys. Chem, 1938, vol. 44, pp. 104–111.

    Google Scholar 

  4. Mihajlov, V. and Roehr, C., Cadmium-rich cadmides of the system Na/K/Cd, Zeitschr.Anorg. Allgem. Chem., 2010, vol. 636, nos. 9–10, pp. 1792–1802.

    Article  Google Scholar 

  5. Samson, S., Crystal structure of NaCd2, Nature (London, UK), 1962, vol. 195, pp. 259–262.

    Article  CAS  Google Scholar 

  6. Todorov, E. and Sevov, S.C., Intermetallic Frameworks: synthesis, characterization, and bonding of K0.4Cd2 and Na26Cd141, Inorg. Chem., 1998, vol. 37, pp. 6341–6345.

    Article  CAS  Google Scholar 

  7. Hoch, C. and Simon, A., Na11Hg52: Complexity in a polar metal, Angew. Chem., Int. Ed. Engl., 2012, vol. 51, no. 13, pp. 3262–3265.

    Article  CAS  Google Scholar 

  8. Nielson, J.W. and Baenziger, N.C., The crystal strutures of Na Hg2, Na Hg and Na3Hg2, Acta Crystallogr., 1954, vol. 7, pp. 277–282.

    Article  Google Scholar 

  9. Deiseroth, H.J., Stupperich, A., Pankaluoto, R., and Christensen, N.E., A variant of the cesiumchloride structure: structuralrelations and electronic structure, Z. Anorg. Allgem. Chem., 1991, vol. 597, pp. 41–50.

    Article  CAS  Google Scholar 

  10. Tkachuk, A.V. and Mar, A., Redetermination of Na3Hg2, Acta Crystallogr., Sect. E, 2006, vol. 62, pp. il29–il30.

    Google Scholar 

  11. Deiseroth, H.J., Toelstede, D., and Bauhofer, W., Rb Hg2 und CsHg2, Darstellung, Kristallstruktur, Elektrischeleitfaehigkeit, Z. Anorg. Allgem. Chem., 1990, vol. 587, pp. 103–109.

    Article  CAS  Google Scholar 

  12. Deiseroth, H.J. and Rochnia, M., Einkristallstudien zur Temperaturabhaengigkeit der Kristallstruktur von alpha—Na3Hg, Zeitschr.Anorg. Allgem. Chem., 1994, vol. 620, pp. 1736–1740.

    Article  CAS  Google Scholar 

  13. Deiseroth, H.J. and Rochnia, M., Einkristallstudien zur Temperaturabhaengigkeit der Kristallstruktur von beta-Na3Hg, Angew. Chem., 1993, vol. 105, pp. 1556–1558.

    Article  CAS  Google Scholar 

  14. Shevchenko, V.Ya., Blatov, V.A., and Ilyushin, G.D., Intermetallic compounds of the NaCd2 family perceived as assemblies of nanoclusters, Struct. Chem., 2009, vol. 20, no. 6, pp. 975–982.

    Article  CAS  Google Scholar 

  15. Shevchenko, V.Ya., Blatov, V.A., and Ilyushin, G.D., Modeling of self-organization processes in crystalforming systems. New two-layer precursor clusters 0(Na2Cd6)(Na12Cd26) and 0(Na3Cd6)(Na6Cd35) for self-assembly of crystal structure Na26Cd141hP168, Glass Phys. Chem., 2019, vol. 45, pp. 311–316.

  16. Blatov, V.A., Shevchenko, A.P., and Proserpio, D.M., Applied topological analysis of crystal structures with the program package ToposPro, Cryst. Growth Des., 2014, vol. 14, no. 7, pp. 3576–3585. http://topospro.com/.

    Article  CAS  Google Scholar 

  17. Ilyushin, G.D., Modelirovanie protsessov samoorganizatsii v kristalloobrazuyushchikh sistemakh (Modeling of Self-Organization Processes in Crystal-Forming Systems), Moscow: Editorial URSS, 2003.

  18. Blatov, V.A., Ilyushin, G.D., and Proserpio, D.M., Nanocluster model of intermetallic compounds with giant unit cells: β, β'-Mg2Al3 polymorphs, Inorg. Chem., 2010, vol. 49, no. 4, pp. 1811–1818.

    Article  CAS  Google Scholar 

  19. Ilyushin, G.D., Modeling of the self-orinnization processes in crystal-forming systems. Tetrahedral metal clusters and the self-assembly of crystal structures of intermetallic compounds, Crystallogr. Rep., 2017, vol. 62, pp. 670–683.

    Article  CAS  Google Scholar 

  20. Ilyushin, G.D., Symmetry and topology code of the cluster self-assembly of intermetallic compounds \({\text{A}}_{{\text{2}}}^{{{\text{[16]}}}}{\text{B}}_{{\text{4}}}^{{{\text{[12]}}}}\) of the friauf families Mg2Cu4 and Mg2Zn4, Crystallogr. Rep., 2018, vol. 63, pp. 543–552.

    Article  CAS  Google Scholar 

  21. Shevchenko, V.Ya., Blatov, V.A., and Ilyushin, G.D., Symmetry and topology codes of cluster self-assembly for icosahedral structures of the NaZn13-cF112 and TRB66-cF1944 family, Glass Phys. Chem., 2015, vol. 41, no. 4, pp. 341–351.

    Article  CAS  Google Scholar 

  22. Ilyushin, G.D., The crystal chemistry of intermetallic lithium compounds. A review, Russ. J. Inorg. Chem., 2018, vol. 63, no. 14, pp. 1786–1799.

    Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, grant no. 19-02-00636, and the Ministry of Science and Higher Education as part of the work on the state assignment of the Federal Research Center for Crystallography and Photonics of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ya. Shevchenko.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by M. Aladina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevchenko, V.Y., Blatov, V.A. & Ilyushin, G.D. Modeling Self-Organization Processes in Crystal-Forming Systems: Suprapolyedic Na18Hg157 Precursor Clusters for the Self-Assembly of the Na99Hg468hP567 Crystal Structure. Glass Phys Chem 45, 399–404 (2019). https://doi.org/10.1134/S1087659619060191

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659619060191

Keywords:

Navigation