Skip to main content
Log in

Effect of Transition-Metal Ions (Ni2+, Cu2+ and Co2+) on the Electric and Dielectric Properties of Zinc Sodium Phosphate

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

In this work, the influence of transition-metal ions doping on the zinc phosphate glass has been investigated. To do so, a series of glass doped with Ni2+, Cu2+and Co2+ at different ratio (1, 2 and 5 mol %) was synthesized. The Fourier transform infrared spectra was used to elucidate the bonding system of the constituent atoms. The dielectric and conductivity properties were studied by impedance spectroscopy over a frequency range from 10–2 Hz to 1 MHz at different temperatures. The changes in the conductivity and activation energy dependon the chemical composition and indicate a changeover of the predominant conduction mechanism from ionic to polaronic. The results have shown a lower electrical conductivity for glass containing CuO. This is related to the lower depolymerization degree of the glass network by Cu2+ ions. The dielectric constant and dielectric loss increased with the temperature and decreased with the frequency for all glasses studied. The variation of the value s factor for all glass samples as the function of temperature agrees with the correlated barrier-hopping (CBH) model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Kitheri, J., Asuvathraman, R., Venkata, K.R., Jose, J., Govindan Kutty, K.V., and Vasudeva Rao, P.R., Investigation of thermal expansion and specific heat of cesium loaded iron phosphate glasses, J. Nucl. Mater., 2012, vol. 429, pp. 1–6.

    Article  Google Scholar 

  2. Xiuying, L., Zhuohao, X., Minhua, L., Xiaofeng, D., Ting, D., and Yongqing, W., Low melting glasses in ZnO–Fe2O3–P2O5 system with high chemical durability and thermal stability for sealing or waste immobilization, J. Non-Cryst. Solids, 2017, vol. 469, pp. 62–69.

    Article  Google Scholar 

  3. Dandan, F., Quanlong, H., Min, L., Weinan, L., Weiwei, S., Pengfei, W., and Peng, B., Investigations on the photoluminescence spectra and its defect-related nature for the ultraviolet transmitting fluoride-containing phosphate-based glasses, J. Non-Cryst. Solids, 2015, vol. 425, pp. 130–137.

    Article  Google Scholar 

  4. Murawski, L., Chung, C., and Mackenzie, J.D., Electrical properties of semiconducting oxide glasses, J. Non-Cryst. Solids, 1979, vol. 32, pp. 91–104.

    Article  CAS  Google Scholar 

  5. El-Desoky, M.M., Tahoon, K., and Hassaan, M., Conductivity and dielectric behaviour of iron sodium phosphate glasses, Mater. Chem. Phys., 2001, vol. 69, pp. 180–185.

    Article  CAS  Google Scholar 

  6. Toloman, D., Ciceo-Lucacel, R., Magdas, D., Regos, A., Iris, A., Leostean, C., and Ardelean, I., The modifier/former role of MoO3 in some calcium-phosphate glasses, J. Alloys Compd., 2013, vol. 556, pp. 67–70.

    Article  CAS  Google Scholar 

  7. Griebenow, K., Kamitsos, E., and Wondraczek, L., Mixed-modifier effect in alkaline earth metaphosphate glasses, J. Non-Cryst. Solids, 2017, vol. 468, pp. 74–81.

    Article  CAS  Google Scholar 

  8. El-Desoky, M., Ibrahim, B.F., and Hassaan, M., Effect of sulfur addition on the transport properties of semiconducting iron phosphate glasses, Solid State Sci., 2011, vol. 13, pp. 1616–1622.

    Article  CAS  Google Scholar 

  9. Annamalai, S., Bhatta, R., Pegg, I., and Dutta, B., Majority charge carrier reversal and its effect on thermal and electron transport in xV2O5–(1 – x) As2O3 glasses, J. Non-Cryst. Solids, 2012, vol. 358, pp. 1019–1027.

    Article  CAS  Google Scholar 

  10. Dutta, B., Fahmy, N., and Pegg, I., Effect of mixing transition ions in glasses. II. The P2O5–Fe2O3–MnO system, J. Non-Cryst. Solids, 2005, vol. 351, pp. 2552–2561.

    Article  CAS  Google Scholar 

  11. Khawaja, E., Salim, M., Khan, M., Al-Adel, F., Khattak, G., and Hussain, Z., XPS auger electrical and optical studies of vanadium phosphate glasses doped with nickel oxide, J. Non-Cryst. Solids, 1989, vol. 110, pp. 33–43.

    Article  CAS  Google Scholar 

  12. Elbatal, F., Morsi, R., Ouis, M., and Marzouk, S., UV-visible, Raman and E. S. R. studies of gamma-irradiated NiO-doped sodium metaphosphate glasses, Spectrochim. Acta, Part A, 2010, vol. 77, pp. 717–726.

    Article  Google Scholar 

  13. Naresh, P., Naga Raju, G., Gandhi, Y., Piasecki, M., and Veeraiah, N., Insulating and other physical properties of CoO-doped zinc oxyfluoride-borate glass-ceramics, J. Am. Ceram. Soc., 2014, vol. 98, pp. 413–422.

    Article  Google Scholar 

  14. Brik, M. and Kityk, I., Spectroscopic and crystal field studies of (NH4)2BeF4:Co2+, Solid State Commun., 2007, vol. 143, pp. 326–330.

    Article  CAS  Google Scholar 

  15. Marly, B.C., Robert, D.S., Milton, B., and Milan, K., Co2+:YSGG saturable absorber Q switch for infrared erbium lasers, Opt. Lett., 1995, vol. 20, pp. 339–341.

    Article  Google Scholar 

  16. Sreehari, S., Prasad, S., Venkateswara Rao, B.R., and Sivaramakrishna, J., Effect of alkali modifier ion on spectroscopic properties of Cu2+ doped lead zinc phosphate glass system, Indian J Phys., 2015, vol. 89, pp. 1169–1175.

    Article  Google Scholar 

  17. Mishra, A., Petit, L., Pihl, M., Andersson, M., Salminen, T., Rocherullé, J., and Massera, J., Thermal, structural and in vitro dissolution of antimicrobial copper-doped and slow resorbable iron-doped phosphate glasses, J. Mater. Sci., 2017, vol. 15, pp. 8957–8972.

    Article  Google Scholar 

  18. Dissado, LA. and Hill, R.M., Dielectric behaviour of materials undergoing dipole alignment transitions, Philos. Mag. B., 1980, vol. 41, pp. 625–642.

    Article  CAS  Google Scholar 

  19. Satyanarayana, T., Kityk, I.V., Piasecki, M., Bragiel, P., Brik, M.G., Gandhi, Y., and Veeraiah, N., Structural investigations on PbO–Sb2O3–B2O3: CoO glass ceramics by means of spectroscopic and dielectric studies, J. Phys.: Condens. Matter, 2009, vol. 21, p. 245104.

    CAS  Google Scholar 

  20. Punita, S., Das, S.S., and Agnihotry, S.A., Structure–property correlation in (50 – x)Na2O–50P2O5xCoCl2 glassy systems, J. Non-Cryst. Solids, 2005, vol. 351, pp. 3730–3737.

    Article  Google Scholar 

  21. Ličina, V., Moguš, M., Reis, S.T., and Day, D.E., Electronic conductivity in zinc iron phosphate glasses, J. Non-Cryst. Solids, 2007, vol. 353, pp. 4395–4399.

    Article  Google Scholar 

  22. Moustafa, Y. and El-Egili, K., Infrared spectra of sodium phosphate glasses, J. Non-Cryst. Solids, 1998, vol. 240, pp. 144–153.

    Article  CAS  Google Scholar 

  23. Rao, K.J., Benqlilou-Moudden, H., Desbat, B., Vinatier, P., and Levasseur, A., Infrared spectroscopic study of LiCoO2 thin films, J. Solid State Chem., 2002, vol. 165, pp. 42–47.

    Article  CAS  Google Scholar 

  24. Hongxia, Q., Zhiqiang, W., Hua, Y., Lin, Z., and Xiaoyan, Y., Preparation and characterization of NiO nanoparticles by anodic arc plasma method, J. Nanometer., 2009, p. 795928.

    Google Scholar 

  25. Abo-Naf, S.M., El-Amiry, M.S., and Abdel-Khalek, A.A., FT-IR and UV-Vis optical absorption spectra of γ-irradiated calcium phosphate glasses doped with Cr2O3, V2O5 and Fe2O3, J. Opt. Mater., 2008, vol. 30, pp. 900–909.

    Article  CAS  Google Scholar 

  26. Gacem, L., Artemenko, A., Ouadjaout, D., Chaminade, J.P., Garcia, A., Pollet, M., and Viraphong, O., ESR and fluorescence studies of Mn-doped Na2ZnP2O7 single crystal and glasses, Solid State Sci., 2009, vol. 11, pp. 1854–1860.

    Article  CAS  Google Scholar 

  27. Stähli, C., Maziar, S.M., Waters, K.E., and Nazhat, S.N., Characterization of aqueous interactions of copper-doped phosphate-basedglasses by vapour sorption, Acta Biomater., 2014, vol. 10, pp. 3317–3326.

    Article  Google Scholar 

  28. Shih, P., Yung, S., and Chin, T., FTIR and XPS studies of P2O5–Na2O–CuO glasses, J. Non-Cryst. Solids, 1999, vol. 244, pp. 211–222.

    Article  CAS  Google Scholar 

  29. Chahine, A., Et-Tabirou, M., El Benaissi, M., Haddad, M., and Pascal, J.L., Effect of CuO on the structure and properties of (50 – x/2)Na2O – xCuO–(50 – x/2)P2O5 glasses, J. Mater. Chem. Phys., 2004, vol. 84, pp. 341–347.

    Article  CAS  Google Scholar 

  30. Elliott, S., A.c. conduction in amorphous chalcogenide and pnictide semiconductors, Adv. Phys., 1978, vol. 36, pp. 135–217.

    Article  Google Scholar 

  31. Muralidharan, P., Venkateswarlu, M., and Satyanarayana, N., Acid catalyst concentration effect on structure and ion relaxation studies of Li2O–P2O5–B2O3–SiO2 glasses synthesized by sol-gel process, J. Non-Cryst. Solids, 2005, vol. 351, pp. 583–594.

    Article  CAS  Google Scholar 

  32. Dyre, J.C., Maass, P., Roling, B., and Sidebottom, L., Fundamental questions relating to ion conduction in disordered solids, Rep. Prog. Phys., 2009, vol. 72, pp. 1–15.

    Article  Google Scholar 

  33. Khawaja, E.E., Hussain, M.S., and Khan, M.A., Spectroscopic, electrical and EPR studies of binary semiconducting oxide glasses containing 50 mol % V2O5, J. Mater. Sci., 1986, vol. 21, pp. 2812–2818.

    Article  CAS  Google Scholar 

  34. Kharroubi, M., Assad, H., Balme, S., Gacem, L., and Maghni, C., Influence of Zn/Co ratio on dielectric behaviour of Na2Zn1 – xCoxP2O7 glasses, Ionics, 2016, vol. 12, pp. 2355–2361.

    Article  Google Scholar 

  35. Barczynski, R.J. and Murawski, L., Mixed electronic-ionic conductivity in transition metal oxide glasses containing alkaline ions, J. Non-Cryst. Solids, 2002, vols. 307–310, pp. 1055–1059.

    Article  Google Scholar 

  36. Böttcher, C., van Belle, O., Bordewijk, P., Rip, A., and Yue, D., Theory of electric polarization, J. Electrochem. Soc., 1974, vol. 121, p. 211C.

    Article  Google Scholar 

  37. Mohan, N., Reddy, M., Jayasankar, C., and Veeraiah, N., Spectroscopic and dielectric studies on MnO doped PbO–Nb2O5–P2O5 glass system, J. Alloys Compd., 2008, vol. 458, pp. 66–76.

    Article  CAS  Google Scholar 

  38. Chopra, S., Sharma, S., Goel, T.C., and Mendiratta, R.G., Structural, dielectric and pyroelectric studies of Pb1 – xCaxTiO3 thin films, Solid State Commun., 2003, vol. 127, pp. 299–304.

    Article  CAS  Google Scholar 

  39. Rajyasree, C.H., Srinavasa Rao, P., VinayaTeja, P.M., Ramesh Babu, A., Yusub, S., and Krishna, Rao D., Structural impact of iron ions on BaBiBO4 glasses, spectroscopic and dielectric investigations, J. Non-Cryst. Solids, 2012, vol. 358, pp. 2597–2605.

    Article  CAS  Google Scholar 

  40. Kumar, R.S. and Hariharan, K., AC conductivity and electrical relaxation studies on 10CuI–60AgI–30V2O5 glasses, Mater. Chem. Phys., 1999, vol. 60, pp. 28–38.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kharroubi.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalai, C., Kharroubi, M., Gacem, L. et al. Effect of Transition-Metal Ions (Ni2+, Cu2+ and Co2+) on the Electric and Dielectric Properties of Zinc Sodium Phosphate. Glass Phys Chem 45, 503–512 (2019). https://doi.org/10.1134/S1087659619060087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659619060087

Keywords:

Navigation