Skip to main content
Log in

Deposition of Films from a Mixture of Hexamethylcyclotrisilazane Vapor and Argon in Inductively Coupled Plasma

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

In an inductively coupled high-frequency discharge plasma, SiCxNy:H films are obtained from a mixture of hexamethylcyclotrisilazane vapor and argon at substrate temperatures of 100 to 400°C and a discharge power of 200 W. The simplest plasma components (nitrogen, cyan, silicon atoms, CH free radicals, and C2 dimers) are determined. Some physicochemical properties of the films, including the growth rate, types of chemical bonds, refractive index, transparency interval, and contact angle, are studied. The synthesized films have a polymer-like structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Berwind, M.F., Hashibon, A., Fromm, A., Gurr, M., Burmeister, F., and Eberl, C., Rapidly prototyping biocompatible surfaces with designed wetting properties via photolithography and plasma polymerization, Microfluid. Nanofluid., 2017, vol. 21, pp. 144–147.

    Article  Google Scholar 

  2. Ooi, P.C., Wee, M.F.M.R., Dee, Ch.F., Yap, Ch.Ch., Salleh, M.M., and Majlis, B.Y., Fabrication of transparent bistable switching memory device using plasma polymerized hexamethyldisiloxane layers with embedded graphene quantum dots, Thin Solid Films, 2018, vol. 645, pp. 45–50.

    Article  CAS  Google Scholar 

  3. Yan, X., Li, J., and Yi, L., Fabrication of pH-responsive hydrophilic/hydrophobic Janus cotton fabric via plasma-induced graft polymerization, Mater. Lett., 2017, vol. 208, pp. 46–49.

    Article  CAS  Google Scholar 

  4. Wróbel, A.M. and Kryszewski, M., Preparation, structure, and some properties of organosilicon thin polymer films obtained by plasma polymerization, Prog. Colloid Polym. Sci., 1991, vol. 85, pp. 91–101.

    Article  Google Scholar 

  5. Wagner, N.J., Gerberich, W.W., and Heberlein, V.R., Thermal plasma chemical vapor deposition of wear-resistant, hard Si–C–N coatings, Surf. Coat. Technol., 2006, vol. 201, pp. 4168–4173.

    Article  CAS  Google Scholar 

  6. Fainer, N.I., Plekhanov, A.G., and Asanov, I.P., Study of chemical bonds and element composition of silicon oxycarbonitride films by the methods of XP-, IR-, and energy-dispersive spectroscopy, Glass Phys. Chem., 2017, vol. 43, no. 5, pp. 410–416.

    Article  CAS  Google Scholar 

  7. Silicon Carbide—Materials, Processing and Applications in Electronic Devices, Mukherjee, M., Ed., Rijeka: InTech, 2011.

    Google Scholar 

  8. Plasma Polymer Films, Biederman, H., Ed., London: Imperial College Press, 2004.

    Google Scholar 

  9. Huang, Ch., Lin, H.-H., and Li, Ch., Atmospheric pressure plasma polymerization of super-hydrophobic nano-films using hexamethyldisilazane monomer, Plasma Chem. Plasma Process., 2015, vol. 35, pp. 1015–1028.

    Article  CAS  Google Scholar 

  10. Guo, S., Rochotzki, R., Lundström, I., and Arwin, H., Ellipsometric sensitivity to halothane vapors of hexamethyldisiloxane plasma polymer films, Sens. Actuators, B, 1997, vol. 44, pp. 243–247.

    Article  CAS  Google Scholar 

  11. Grill, A. and Neumayer, D.A., Structure of low dielectric constant to extreme low dielectric constant SiCOH films: Fourier transform infrared spectroscopy characterization, J. Appl. Phys., 2003, vol. 94, no. 10, pp. 6697–6707.

    Article  CAS  Google Scholar 

  12. Grill, A. and Patel, V., Ultralow dielectric constant pSiCOH films prepared with tetramethylcyclotetrasiloxane as skeleton precursor, J. Appl. Phys., 2008, vol. 104, p. 024113.

    Article  Google Scholar 

  13. Wróbel, A.M., Kryszewski, M., and Gazicki, M., Structure of glow discharge polysilazane thin films, Polymer, 1976, vol. 17, pp. 678–684.

    Article  Google Scholar 

  14. Wróbel, A.M., Kryszewski, M., and Gazicki, M., Oligomeric products in plasma-polymerized organosilicones, J. Macromol. Sci. Chem. A, 1983, vol. 20, pp. 583–618.

    Article  Google Scholar 

  15. Brooks, T.A. and Hess, D.W., Plasma-enhanced chemical vapor deposition of silicon nitride from 1,1,3,3,5,5-hexamethylcyclotrisilazane and ammonia, Thin Solid Films, 1987, vol. 153, pp. 521–529.

    Article  CAS  Google Scholar 

  16. Brooks, T.A. and Hess, D.W., Deposition chemistry and structure of plasma-deposited silicon nitride films from 1,1,3,3,5,5-hexamethylcyclotrisilazane, J. Appl. Phys., 1988, vol. 64, pp. 841–849.

    Article  CAS  Google Scholar 

  17. Brooks, T.A. and Hess, D.W., Characterization of silicon nitride and silicon carbonitride layers from 1,1,3,3,5,5-hexamethylcyclotrisilazane plasmas, J. Electrochem. Soc., 1988, vol. 135, no. 12, pp. 3086–3093.

    Article  CAS  Google Scholar 

  18. Smirnova, T.P., Khramova, L.V., Belyi, V.I., Solov’ev, A.P., and Taranova, I.V., Obtaining polymer films from hexamethylcyclotrisilazane in high-frequency discharge plasma, Vysokomol.Soedin., 1988, vol. 30, no. 1, pp. 164–169.

    CAS  Google Scholar 

  19. Yakovkina, L.V., Smirnova, T.P., and Danilovich, O.V., Dehydrogenation mechanism for SiN:H layers prepared from hexamethylcyclotrisilazane, Inorg. Mater., 1996, vol. 32, no. 5, pp. 498–502.

    CAS  Google Scholar 

  20. Fainer, N.I., Golubenko, A.N., Rumyantsev, Yu.M., and Maksimovskii, E.A., Use of hexamethylcyclotrisilazane for preparation of transparent films of complex compositions, Glass Phys. Chem., 2009, vol. 35, no. 3, pp. 274–283.

    Article  CAS  Google Scholar 

  21. Hoffmann, P.S., Fainer, N.I., Baake, O., Kosinova, M.L., Rumyantsev, Y.M., Trunova, V.A., Klein, A., Pollakowski, B., Beckhoff, B., and Ensinger, W., Silicon carbonitride nanolayers—synthesis and chemical characterization, Thin Solid Films, 2012, vol. 520, pp. 5906–5913.

    Article  CAS  Google Scholar 

  22. Fainer, N.I., From organosilicon precursors to multifunctional silicon carbonitride, Russ. J. Gen. Chem., 2012, vol. 82, no. 1, pp. 43–52.

    Article  CAS  Google Scholar 

  23. Orlikovskii, A.A., Rudenko, K.V., and Averkin, S.N., Fine-line plasma-enhanced processes on the basis of a set of pilot units with a scalable inductively coupled plasma source for use in microelectronics, High Energy Chem., 2006, vol. 40, no. 3, pp. 182–193.

    Article  Google Scholar 

  24. Rumyantsev, Yu.M., Chagin, M.N., Kosinova, M.L., and Kuznetsov, F.A., Synthesis of thin silicon carbonitride films from hexamethyldisilazane in an inductively coupled plasma reactor, Inorg. Mater., 2015, vol. 51, no. 9, pp. 897–902.

    Article  CAS  Google Scholar 

  25. Shayapov, V.R., Chagin, M.N., and Rumyantsev, Yu.M., Chemical composition of an inductively coupled hexamethyldisilazane–argon plasma and properties of films grown in this plasma, Inorg. Mater., 2016, vol. 52, no. 6, pp. 630–636.

    Article  CAS  Google Scholar 

  26. Rumyantsev, Yu.M., Chagin, M.N., Shayapov, V.R., Yushina, I.V., Kichai, V.N., and Kosinova, M.L., Synthesis and properties of thin films formed by vapor deposition from tetramethylsilane in a radio-frequency inductively coupled plasma discharge, Glass Phys. Chem., 2018, vol. 44, no. 3, pp. 174–182.

    Article  CAS  Google Scholar 

  27. Rearse, R.W.B. and Gaydon, A.G., The Identification of Molecular Spectra, Netherlands: Springer, 1976.

    Google Scholar 

  28. Dieke, G.H., in The Hydrogen Molecule Wavelength Tables of Gerhard Heinrich Dieke, Crosswhite, H.M., Ed., New York: Wiley-InterScience, 1972.

    Google Scholar 

  29. NIST Atomic Spectra Database, ver. 5.5.6, National Institute of Standards and Technology, Gaithersburg, MD. https://physics.nist.gov/asd.

  30. Anderson, D.R., Infrared, Raman, and ultraviolet spectroscopy, in Analysis of Silicones, Smith, A.L, Ed., New York: Willey-Interscience, 1974, Chap. 10, p. 247.

    Google Scholar 

  31. Rao, C.N.R., Chemical Applications of Infrared Spectroscopy, New York: Academic, 1963.

    Google Scholar 

  32. Launer, P.J., Infrared analysis of organo silicon compounds: Spectra structure correlations, in Silicon Compounds: Register and Review, 4th ed., Anderson, R., Arkles, B., and Larson, G.L., Eds., Bristol: Petrarch Systems, 1987, pp. 100–103.

    Google Scholar 

  33. Maslowsky, E., Vibrational Spectra of Organometallics: Theoretical and Experimental Data, New York: Wiley, 2019.

    Google Scholar 

  34. Stuart, S., Organosilicon Chemistry: Special Lectures Presented at the International Symposium on Organosilicon Chemistry, London: Butterworths, 1966.

  35. Wróbel, A.M., Klemberg, J.E., Wertheimer, M.R., and Schreiber, H.P., Polymerization of organosilicones in microwave discharges. II. Heated substrates, J. Macromol. Sci.,Ser. A, 1981, vol. 15, pp. 197–213.

    Google Scholar 

  36. Wróbel, A.M., Aging process in plasma-polymerized organosilicon thin films, J. Macromol. Sci. A, 1985, vol. 22, no. 8, pp. 1089–1100.

    Article  Google Scholar 

  37. Guruvenket, S., Andrie, S., Simon, M., Johnson, K.W., and Sailer, R.A., Atmospheric pressure plasma CVD of amorphous hydrogenated silicon carbonitride (a-SiCN:H) films using triethylsilane and nitrogen, Plasma Process. Polym., 2011, no. 8, pp. 1126–1136.

  38. Shayapov, V.R., Khomyakov, M.N., and Rumyantsev, Yu.M., Scanning probe microscopy and nanoindentation studies of silicon carbonitride films obtained by PECVD from hexamethyldisilazane, Lett. Mater., 2014, vol. 4, no. 2, pp. 114–116.

    Article  Google Scholar 

  39. Wróbel, A.M., Silicon carbonitride (SiCN) films by remote hydrogen microwave plasma CVD from tris(dimethylamino)silane as novel single-source precursor, Chem. Vap. Deposit., 2010, vol. 16, pp. 211–215.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Yu.M. Rumyantsev for discussing the results of the work and I.V. Yushina for obtaining the sample transmission spectra.

Funding

This work was carried out within the state assignment of the Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. R. Shayapov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shayapov, V.R., Chagin, M.N., Kolodin, A.N. et al. Deposition of Films from a Mixture of Hexamethylcyclotrisilazane Vapor and Argon in Inductively Coupled Plasma. Glass Phys Chem 45, 525–531 (2019). https://doi.org/10.1134/S108765961906018X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S108765961906018X

Keywords:

Navigation