Skip to main content
Log in

Study of Fracture Mechanism of Machinable Mica Glass-Ceramics under Quasi-Static Conditions

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

In order to study the deformation and fracture mechanism of machinable mica glass ceramics under different loading modes, quasi-static uniaxial tensile and compression experiments are designed and analyzed based on the obtained quasi-static stress-strain curves at different strain rates, the macroscopic and microscopic fracture morphology of the samples and the nano-indentation experiment. The results show that mica glass ceramics are basically elastic brittle bodies. A very short “softening” section before the compression fracture is observed. There is a significant SD (tensile and compressive strength difference) effect, and the ratio of compressive to tensile strength is 14. The fracture mechanism of mica glass ceramics is related to the loading mode. The fracture mechanism is normal tensile fracture perpendicular to the loading axis under tensile loading. Under compressive loading, there is a mixed mode of distensile splitting and local shear failure. The microcrack is preferentially nucleated and extends to the weak interface at the junction of two phases, and the critical nucleation load is about 20 mN. The energy consumption mechanism of crack initiation and propagation at the weak interface and cleavage steps are the reason for the softening of the compression end curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Abdel-Hameed, S.A.M., Ismail, N., and Youssef H.F., Preparation and characterization of mica glass-ceramics as hydrogen storage materials, Int. J. Hydrogen Energy, 2017, vol. 42, no. 10, pp. 6829–6839. https://doi.org/10.1016/j.ijhydene.2016.11.190

    Article  CAS  Google Scholar 

  2. Pinchuk, N., Parkhomey, O., and Sych, O., In vitro investigation of bioactive glass-ceramic composites based on biogenic hydroxyapatite or synthetic calcium phosphates, Nanoscale Res. Lett., 2017, vol. 111, no. 12, pp. 1–8. https://doi.org/10.1186/s11671-017-1895-1

    Article  CAS  Google Scholar 

  3. Gali, S., Ravikumar, K., and Murthy, B.V.S., Zirconia toughened mica glass ceramics for dental restorations, Dent. Mater., 2018, vol. 34, no. 3, pp. e36–e45. https://doi.org/10.1016/j.dental.2018.01.009

    Article  CAS  Google Scholar 

  4. Fuertes, V., Cabrera, M.J., and Seores, J., Enhanced wear resistance of engineered glass-ceramic by nanostructured self-lubrication, Mater. Des., 2019, vol. 168, pp. 1–10. https://doi.org/10.1016/j.matdes.2019.107623

    Article  CAS  Google Scholar 

  5. Rahaman Molla, A. and Basu, B., Microstructure, mechanical, and in vitro properties of mica glass-ceramics with varying fluorine content, J. Mater. Sci. Mater. Med., 2009, vol. 20, pp. 869–882. https://doi.org/10.1007/s10856-008-3643-7

    Article  CAS  Google Scholar 

  6. Bai, J. and Chaysuwan, D., Nucleation, crystallization and characterization of mica-based glass-ceramics with fluorapatite, Adv. Mater. Res., 2014, vol. 936, pp. 164–169. www.scientific.net/AMR.936.164.

    Book  Google Scholar 

  7. Marada, T., Rodrigues, A.C., and Furtado, R., Polishing for glass ceramics: Which protocol?, J. Prosthodont. Res., 2014, vol. 58, no. 3, pp. 160–170. https://doi.org/10.1016/j.jpor.2014.02.001

    Article  Google Scholar 

  8. Ma, L., Yu, A.-b., and Gu, L.-ch., Mechanism of compound fracture and removal in grinding process for low-expansion glass ceramics, Int. J. Adv. Manuf. Tech., 2017, vol. 91, no. 5, pp. 2303–2313. https://doi.org/10.1007/s00170-016-9915-3

    Article  Google Scholar 

  9. Hing, P. and McMillan, P.W., The strength and fracture properties of glass-ceramics, J. Mater. Sci., 1973, vol. 8, no. 7, pp. 1041–1048. https://doi.org/10.1007/BF00756636

    Article  CAS  Google Scholar 

  10. Fraçois, D., Pineau, A., and Zaoui, A., Damage and fracture of non-metallic naterials, Mech. Behaviour Mater., 2012, vol. 191, pp. 551–635. https://doi.org/10.1007/978-94-007-4930-6_10

    Article  Google Scholar 

  11. Fischer-Cripps, A.C., Shear driven damage and internal friction in indentation loading of a glass-ceramic, Fract. Mech. Ceram., 2005, vol. 14, pp. 113–120. https://doi.org/10.1007/978-0-387-28920-5_10

    Article  CAS  Google Scholar 

  12. Fischer-Cripps, A.C., Role of internal friction in indentation damage in a mica-containing glass-ceramic, J Am. Ceram. Soc., 2001, vol. 84, no. 11, pp. 2603–2606. https://doi.org/10.1111/j.1151-2916.2001.tb01060.x

    Article  CAS  Google Scholar 

  13. Lawn, B.R., Wilshaw, T.R., Barry, T.I., and Morrell, R., Hertzian fracture of glass ceramics, J. Mater. Sci., 1975, vol. 10, no. 1, pp. 179–182. https://doi.org/10.1007/BF00541049

    Article  CAS  Google Scholar 

  14. Cai, H., Marion, A., and Kalceff, S., Deformation and fracture of mica-containing glass-ceramics in Hertzian contacts, J. Mater. Res., 1994, vol. 9, no. 3, pp. 762–770. https://doi.org/10.1557/JMR.1994.0762

    Article  CAS  Google Scholar 

  15. Reimanis, I.E. and Schaut, R.A., Hertzian testing to obtain flaw distributions in high strength glasses and glass-ceramics, J Am. Ceram. Soc., 2016, vol. 99, no. 11, pp. 3712–3718. https://doi.org/10.1111/jace.14407

    Article  CAS  Google Scholar 

  16. Chen, J., Xie, Zh., and Wei, S., Enhanced mechanical properties of machinable mica glass ceramics at cryogenic temperatures, MRS Commun., 2016, vol. 6, no. 4, pp. 1–5. https://doi.org/10.1557/mrc.2016.59.

  17. Zhang, Z.F. and Eckert, J., Unified tensile fracture criterion, Phys. Rev. Lett., 2005, vol. 94, no. 9, pp. 1–4. https://doi.org/10.1103/PhysRevLett.94.094301

    Article  CAS  Google Scholar 

  18. Qu, R.T., Eckert, J., and Zhang, Z.F., Tensile fracture criterion of metallic glass, J. Appl. Phys., 2011, vol. 109, no. 8, pp. 1–12. https://doi.org/10.1063/1.3580285

    Article  CAS  Google Scholar 

  19. Chen, Y., Jiang, M.Q., and, Wei, Y.J., Failure criterion for metallic glasses, Philos. Mag., 2011, vol. 91, no. 36, pp. 4536–4554. https://doi.org/10.1080/14786435.2011.613859

    Article  CAS  Google Scholar 

  20. Johnson, K.L., The contribution of micro/nano-tribology to the interpretation of dry friction, Proc. Inst. Mech. Eng., 2000, vol. 214, no. 1, pp. 11–22. https://doi.org/10.1243/0954406001522778

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Yu.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hui Yu, Li, W., Zhu, Wg. et al. Study of Fracture Mechanism of Machinable Mica Glass-Ceramics under Quasi-Static Conditions. Glass Phys Chem 45, 555–564 (2019). https://doi.org/10.1134/S1087659620010083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659620010083

Keywords:

Navigation