Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 21, 2020

Das Ytterbium(III)-Oxidbromid-Oxidotellurat(IV) Yb3O2Br[TeO3]2

The ytterbium(III) oxide bromide oxidotellurate(IV) Yb3O2Br[TeO3]2
  • Steffen F. Meier , Philip L. Russ and Thomas Schleid EMAIL logo

Abstract

The ytterbium(III) oxide bromide oxidotellu-rate(IV) Yb3O2Br[TeO3]2 was obtained from a mixture of Yb2O3, YbBr3 and TeO2 in a molar ratio of 2:1:2 along with an excess of KBr as fluxing agent in evacuated fused silica ampoules after 10 days at T = 800 °C and subsequent slow cooling to room temperatures as colorless, plate-shaped single crystals. Its triclinic crystal structure (a = 663.97(5), b = 697.46(5), c = 1080.15(8) pm, α = 105.102(3), β = 90.931(3), γ = 100.034(3)°; Z = 2, space group: P1) displays three crystallographically different Yb3+ cations with coordination numbers of six, seven and eight. Six out of eight distinct oxygen atoms belong to two independent ψ1-tetrahedral [TeO3]2−anions, whereas the other two represent O2− anions in tetrahedral coordination of four Yb3+ cations each, not having any contact to tellurium. Condensed via common vertices and edges, these [OYb4]10+ tetrahedra form cationic layers 2{[O2Yb3]5+}, which spread out parallel to the (001) plane. Two discrete [TeO3]2− groups and one Br anion per formula unit take care of their three-dimensional interconnection along [001] and the overall charge balance of Yb3O2Br[TeO3]2. Remarkable interactions between the lone pair of electrons at the Te4+ cations of the ψ1-tetrahedral [TeO3]2− anions and those at the Br anions are discussed.


Gewidmet Professor Christian Robl zum 65. Geburtstag.



Corresponding author: Thomas Schleid, Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

Literatur

1. Wontcheu, J. Oxoselenates(IV) of the Trivalent Rare-Earth Elements and Some Derivatives. Dissertation, Universität Stuttgart: Stuttgart, 2004.Search in Google Scholar

2. Lipp, C. Halogenid- und Alkalimetall-Derivate von Selten-Erd-Metall(III)-Oxoselenaten(IV). Dissertation, Universität Stuttgart: Stuttgart, 2008.Search in Google Scholar

3. Zitzer, S. Selten-Erd-Metall(III)-Oxoselenate(IV) und -Oxotellurate(IV): Synthese, Kristallstrukturaufklärung und fluoreszenzspektroskopische Untersuchungen ausgewählter Leuchtstoffe. Dissertation, Universität Stuttgart: Stuttgart, 2012.Search in Google Scholar

4. Greiner, S. Synthese und Charakterisierung von Seltenerdmetall(III)-Verbindungen mit komplexen Lone-Pair-Oxochalkogenat-Anionen. Dissertation, Universität Stuttgart: Stuttgart, 2018.Search in Google Scholar

5. Chou, S.-C. Rare-Earth Metal(III) Oxoselenates(IV) and Oxotellurates(IV) and Investigation of their Luminescent Properties. Dissertation, Universität Stuttgart: Stuttgart, 2016.Search in Google Scholar

6. Wontcheu, J., Schleid, Th. Z. Anorg. Allg. Chem. 2003, 629, 1463–1465; https://doi.org/10.1002/zaac.200300105.Search in Google Scholar

7. Krügermann, I., Wickleder, M. S. J. Solid State Chem. 2002, 167, 113–118; https://doi.org/10.1006/jssc.2002.9629.Search in Google Scholar

8. Wickleder, M. S. Z. Anorg. Allg. Chem. 2000, 626, 547–551; https://doi.org/10.1002/(sici)1521-3749(200002)626:2<547::aid-zaac547>3.0.co;2-v.10.1002/(SICI)1521-3749(200002)626:2<547::AID-ZAAC547>3.0.CO;2-VSearch in Google Scholar

9. Krügermann, I., Wickleder, M. S. Z. Anorg. Allg. Chem. 2002, 628, 2197; https://doi.org/10.1002/1521-3749(200209)628:9/10<2197::aid-zaac11112197>3.0.co;2-3.10.1002/1521-3749(200209)628:9/10<2197::AID-ZAAC11112197>3.0.CO;2-3Search in Google Scholar

10. Krügermann, I., Wickleder, M. S., Wontcheu, J., Schleid, Th. Z. Anorg. Allg. Chem. 2006, 632, 901–904; https://doi.org/10.1002/zaac.200600016.Search in Google Scholar

11. Greiner, S., Chou, S.-C., Schleid, Th. J. Solid State Chem. 2017, 246, 160–166; https://doi.org/10.1016/j.jssc.2016.11.011.Search in Google Scholar

12. Lipp, C., Schleid, Th. Z. Anorg. Allg. Chem. 2008, 634, 657–661; https://doi.org/10.1002/zaac.200700544.Search in Google Scholar

13. Lipp, C., Schleid, Th. Z. Anorg. Allg. Chem. 2008, 634, 1662–1668; https://doi.org/10.1002/zaac.200800099.Search in Google Scholar

14. Lipp, C., Schleid, Th. Z. Naturforsch. 2009, 64b, 375–382; https://doi.org/10.1515/znb-2009-0403.Search in Google Scholar

15. Lipp, C., Schleid, Th. Z. Anorg. Allg. Chem. 2007, 633, 1429–1434; https://doi.org/10.1002/zaac.200700158.Search in Google Scholar

16. Wickleder, M. S., Göhausen, I. Z. Anorg. Allg. Chem. 2000, 626, 1725–1727; https://doi.org/10.1002/1521-3749(200008)626:8<1725::aid-zaac1725>3.0.co;2-q.10.1002/1521-3749(200008)626:8<1725::AID-ZAAC1725>3.0.CO;2-QSearch in Google Scholar

17. Lipp, C., Schleid, Th. Z. Naturforsch. 2008, 63b, 229–236; https://doi.org/10.1515/znb-2008-0301.Search in Google Scholar

18. Wontcheu, J., Schleid, Th. Z. Anorg. Allg. Chem. 2002, 628, 1941–1945; https://doi.org/10.1002/1521-3749(200209)628:9/10<1941::aid-zaac1941>3.0.co;2-b.10.1002/1521-3749(200209)628:9/10<1941::AID-ZAAC1941>3.0.CO;2-BSearch in Google Scholar

19. Wontcheu, J., Zitzer, S., Schleid, Th. Z. Naturforsch. 2016, 71b, 1279–1285; https://doi.org/10.1515/znb-2016-0180.Search in Google Scholar

20. Schleid, Th., Wontcheu J. J. Alloys Compd. 2006, 418, 45–52; https://doi.org/10.1016/j.jallcom.2005.08.098.Search in Google Scholar

21. Wontcheu, J., Schleid, Th. Z. Anorg. Allg. Chem. 2005, 631, 309–315; https://doi.org/10.1002/zaac.200400261.Search in Google Scholar

22. Su, S. -H., Wontcheu, J., Schleid, Th. Z. Kristallogr. 2018, S38, 96.Search in Google Scholar

23. Zitzer, S., Schleifenbaum, F., Schleid, Th. Z. Kristallogr. 2011, 226, 651–656; https://doi.org/10.1524/zkri.2011.1406.Search in Google Scholar

24. Su, S.-H. Investigations into Rare-Earth Metal(III) Oxoselenates(IV) and Ultra-Thin Layered Selenides. Dissertation, Universität Stuttgart: Stuttgart, 2018.Search in Google Scholar

25. Kang, D. -H., Wontcheu, J., Schleid, Th. Solid State Sci. 2009, 11, 299–304; https://doi.org/10.1016/j.solidstatesciences.2008.09.013.Search in Google Scholar

26. Zitzer, S., Schleid, Th. Z. Naturforsch. 2009, 64b, 197–203.10.1515/znb-2009-0209Search in Google Scholar

27. Shannon, R. D. Acta Crystallogr. 1976, A32, 751–767; https://doi.org/10.1107/s0567739476001551.Search in Google Scholar

28. Chou, S.-C., Höss, P., Strobel, S., Schleid, Th. Z. Anorg. Allg. Chem. (in Vorbereitung).Search in Google Scholar

29. Meier, S. F. Neues über Oxotellurate dreiwertiger Lanthanide. Dissertation, Universität Stuttgart: Stuttgart, 2002.Search in Google Scholar

30. Meier, S. F., Höss, P., Schleid, Th. Z. Anorg. Allg. Chem. 2009, 635, 768–775; https://doi.org/10.1002/zaac.200900030.Search in Google Scholar

31. Höss, P., Meier, S. F., Schleid, Th. Z. Anorg. Allg. Chem. 2013, 639, 2548–2553; https://doi.org/10.1002/zaac.201300399.Search in Google Scholar

32. Höss, P., Starkulla, G., Schleid, Th. Acta Crystallogr. 2005, E61, i113–i115; https://doi.org/10.1107/s1600536805016090.Search in Google Scholar

33. Höss, P., Osvet, A., Meister, F., Batentschuk, M., Winnacker, A., Schleid, Th. J. Solid State Chem. 2008, 181, 2783–2788; https://doi.org/10.1016/j.jssc.2008.07.002.Search in Google Scholar

34. Castro, A., Enjalbert, R., Lloyd, D., Rasines, I., Galy, J. J. Solid State Chem. 1990, 85, 100–107; https://doi.org/10.1016/s0022-4596(05)80065-9.Search in Google Scholar

35. Meier, S. F., Schleid, Th. Z. Naturforsch. 2004, 59b, 881–888; https://doi.org/10.1515/znb-2004-0802.Search in Google Scholar

36. Weber, F. A., Meier, S. F., Schleid, Th. Z. Anorg. Allg. Chem. 2001, 627, 2225; https://doi.org/10.1002/1521-3749(200109)627:9<2225::aid-zaac2225>3.0.co;2-d.10.1002/1521-3749(200109)627:9<2225::AID-ZAAC2225>3.0.CO;2-DSearch in Google Scholar

37. Höss, P., Schleid, Th. Z. Anorg. Allg. Chem. 2007, 633, 1391–1396; https://doi.org/10.1002/zaac.200700074.Search in Google Scholar

38. Meier, S. F., Schleid, Th. Z. Naturforsch. 2005, 60b, 720–726; https://doi.org/10.1515/znb-2005-0704.10.1515/znb-2005-0704Search in Google Scholar

39. Meier, S. F., Schleid, Th. Z. Anorg. Allg. Chem. 2002, 628, 526–528; https://doi.org/10.1002/1521-3749(200203)628:3<526::aid-zaac526>3.0.co;2-0.10.1002/1521-3749(200203)628:3<526::AID-ZAAC526>3.0.CO;2-0Search in Google Scholar

40. Greiner, S., Russ, P. L., Schleid, Th. Z. Kristallogr. 2020, S40, 63.Search in Google Scholar

41. Zitzer, S., Su, S.-H., Greiner, S., Schleid, Th. Z. Anorg. Allg. Chem. 2018, 644, 1540–1548; https://doi.org/10.1002/zaac.201800339.Search in Google Scholar

42. Blachnik, R., Jäger-Kasper, A. Z. Anorg. Allg. Chem. 1980, 461, 74–86; https://doi.org/10.1002/zaac.19804610112.Search in Google Scholar

43. Meyer, G. Prog. Solid State Chem. 1982, 14, 141–219; https://doi.org/10.1016/0079-6786(82)90005-x.Search in Google Scholar

44. Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar

45. Schleid, Th. Meyer G. J. Less Common Met. 1989, 149, 73–80; https://doi.org/10.1016/0022-5088(89)90472-4.Search in Google Scholar

46. Vasundhara, K., Achary, S. N., Patwe, S. J., Sahu, A. K., Manoj, N., Tyagi, A. K. J. Alloys Compds. 2014, 596, 151–157; https://doi.org/10.1016/j.jallcom.2014.01.201.Search in Google Scholar

47. Brenner, M. Kinetische Studien zu Phasenumwandlungen zwischen polymorphen Formen von YbBr2 sowie die Bestimmung der Kristallstruktur von YbBr3. Dissertation, Universität Karlsruhe: Karlsruhe, 1997.Search in Google Scholar

48. Politzer, P., Lane, P., Concha, M. C., Ma, Y., Murray, J. S. J. Mol. Model. 2007, 13, 305–311; https://doi.org/10.1007/s00894-006-0154-7.Search in Google Scholar PubMed

49. Clark, T., Hennemann, M., Murray, J. S., Politzer, P. J. Mol. Model. 2007, 13, 291–296; https://doi.org/10.1007/s00894-006-0130-2.Search in Google Scholar PubMed

50. Metrangolo, P., Meyer, F., Pilati, T., Resnati, G., Terraneo, G. Angew. Chem. Int. Ed. 2008, 47, 6114–6127; https://doi.org/10.1002/anie.200800128.Search in Google Scholar PubMed

Received: 2020-06-30
Accepted: 2020-07-05
Published Online: 2020-08-21
Published in Print: 2020-09-25

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 18.4.2024 from https://www.degruyter.com/document/doi/10.1515/znb-2020-0106/html
Scroll to top button