Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 22, 2020

Impact of aging on the hydration of tricalcium aluminate (C3A)/gypsum blends and the effectiveness of retarding admixtures

  • Florian Andreas Hartmann ORCID logo and Johann Plank ORCID logo EMAIL logo

Abstract

In the production of concrete from cement powder and water, setting behavior of the slurry is determined by the formation of ettringite (Ca6Al2(OH)12 · (SO4)3 · 26 H2O) from tricalcium aluminate (Ca9Al6O18, abbreviated C3A) and gypsum (CaSO4 · 2 H2O). Due to the high reaction potential of cement and water, premature hydration can occur after unintentional exposure to moisture. Model binary mixtures of C3A and gypsum stored at 90% relative humidity and 35 °C produced ample amounts of ettringite, which subsequently reacted with atmospheric CO2 to CaCO3, Al(OH)3 and gypsum. Investigated were the two main polymorphs of tricalcium aluminate encountered in cement, pure, cubic C3A and orthorhombic C3A in which calcium is partially substituted by sodium or potassium. Alkali substituted C3A converted to ettringite faster and more completely than pure C3A. Ettringite from prehydration caused a seeding effect, which promotes crystal growth and accelerates bulk hydration of the C3A/gypsum mixtures. Set retarders commonly applied in cement were dissolved in the mixing water prior to hydration to investigate their ability to counteract this acceleration. Sodium gluconate merely delayed the crystal growth but does not prolong the hydration process overall. Potassium pyrophosphate retarded much more effectively by suppressing the seeding effect via removal of calcium ions from the hydration reaction.


Corresponding author: Johann Plank, Chair for Construction Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748Garching bei München, Germany, E-mail:

Funding source: Deutsche Forschungsgemeinschaft 10.1002/9783527809738

Award Identifier / Grant number: PL–472/9–2

Award Identifier / Grant number: 224813219

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors are most grateful to Deutsche Forschungsgemeinschaft, Bonn, Germany (DFG) for financing this project under the grant PL–472/9–2 “Influence of aging of binder systems on the performance of additives”.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Stoian, J., Oey, T., Bullard, J. W., Huang, J., Kumar, A., Balonis, M., Terrill, J., Neithalath, N., Sant, G. Cem. Concr. Res. 2015, 70, 94–103, https://doi.org/10.1016/j.cemconres.2015.01.012.Search in Google Scholar

2. Maltese, C., Pistolesi, C., Bravo, A., Cella, F., Cerulli, T., Salvione, D. Cem. Concr. Res. 2007, 37, 856–865, https://doi.org/10.1016/j.cemconres.2007.02.020.Search in Google Scholar

3. Sprung, S. ZKG Int. 1978, 31, 305–309.Search in Google Scholar

4. Schmid, G., Bier, T. A., Wutz, K., Maier, M. ZKG Int. 2007, 60, 94–103.Search in Google Scholar

5. Barbic, L., Tinta, V., Lozar, B., Marincovic, V. J. Am. Ceram. Soc. 1991, 74, 954–949, https://doi.org/10.1111/j.1151-2916.1991.tb04326.x.Search in Google Scholar

6. Whittaker, M., Dubina, E., Al-Mutawa, F., Arkless, L., Plank, J., Black, L. Adv. Cem. Res. 2013, 25, 12–20, https://doi.org/10.1680/adcr.12.00030.Search in Google Scholar

7. Winnefeld, F. ZKG Int. 2008, 61, 68–77.Search in Google Scholar

8. Dubina, E. Plank J. ZKG Int. 2012, 65, 60–68.Search in Google Scholar

9. Theisen, K., Johansen, V. J. Am. Ceram. Soc. Bull. 1975, 54, 787–791.Search in Google Scholar

10. Meier, M. R., Napharatsamee, T., Plank, J. Construct. Build. Mater. 2017, 139, 232–240, https://doi.org/10.1016/j.conbuildmat.2016.12.126.Search in Google Scholar

11. Mould, A. E., Williams, D. W. Build. Sci. 1974, 9, 243–245, https://doi.org/10.1016/0007-3628(74)90023-1.Search in Google Scholar

12. Taylor, H. F. W. Cement Chemistry, 2nd ed.; Academic Press: London, 1997.10.1680/cc.25929Search in Google Scholar

13. Jensen, O. M., Hansen, P., Lachowski, E. E., Glasser, F. P. Cem. Concr. Res. 1999, 29, 1505–1512, https://doi.org/10.1016/S0008-8846(99)00132-5.Search in Google Scholar

14. Dubina, E., Plank, J., Black, L. Cem. Concr. Res. 2015, 73, 36–41, https://doi.org/10.1016/j.cemconres.2015.02.026.Search in Google Scholar

15. Dubina, E., Wadsö, L., Plank, J. Cem. Concr. Res. 2011, 41, 1196–1204, https://doi.org/10.1016/j.cemconres.2011.07.009.Search in Google Scholar

16. Dubina, E., Black, L., Sieber, R., Plank, J. Adv. Appl. Ceram. 2010, 109, 260–268, https://doi.org/10.1179/174367509X12554402491029.Search in Google Scholar

17. Dubina, E., Plank, J., Black, L., Wadsö, L. Adv. Cem. Res. 2014, 26, 29–40, https://doi.org/10.1680/adcr.12.00062.Search in Google Scholar

18. Boikova, A. I., Domansky, A. I., Paramonova, V. A., Stavitskaja, G. P., Nikuschenko, V. M. Cem. Concr. Res. 1977, 7, 483–492, https://doi.org/10.1016/0008-8846(77)90110-7.Search in Google Scholar

19. Gobbo, L., Sant’Agostino, L., Garcez, L. Cem. Concr. Res. 2004, 34, 657–664, https://doi.org/10.1016/j.cemconres.2003.10.020.Search in Google Scholar

20. Lee, F. C., Banda, H. M., Glasser, F. P. Cem. Concr. Res. 1982, 12, 237–246, https://doi.org/10.1016/0008-8846(82)90010-2.Search in Google Scholar

21. Takeuchi, Y., Nishi, F., Maki, I. Zeit. Krist. 1980, 152, 259–307, https://doi.org/10.1524/zkri.1980.152.14.259.Search in Google Scholar

22. Kirchheim, A. P., Fernàndez-Altable, V., Monteiro, P. J. M., Dal Molin, D. C. C., Casanova, I. J. Mater. Sci. 2009, 44, 2038–2045, https://doi.org/10.1007/s10853-009-3292-3.Search in Google Scholar

23. Singh, N. B. Cem. Concr. Res. 1976, 6, 455–460, https://doi.org/10.1016/0008-8846(76)90074-0.Search in Google Scholar

24. Rickert, J., Thielen, G. Cem. Concr. Aggr. J 2004, 26, 1–10, https://doi.org/10.1520/CCA12315.Search in Google Scholar

25. Bishop, M., Bott, S. G., Barron, A. R. Chem. Mater. 2003, 15, 3074–3088, https://doi.org/10.1021/cm0302431.Search in Google Scholar

26. Wesselsky, A., Jensen, O. M .Cem. Concr. Res. 2009, 39, 973–980, https://doi.org/10.1016/j.cemconres.2009.07.013.Search in Google Scholar

27. Kelzenberg, A. L., Tracy, S. L., Christiansen, B. J., Thomas, J. J., Clarage, M. E., Hodson, S., Jennings, H. M. J. Am. Ceram. Soc. 1998, 81, 2349–2359, https://doi.org/10.1111/j.1151-2916.1998.tb02631.x.Search in Google Scholar

28. Nilles, V., Plank, J. Cem. Concr. Res. 2012, 42, 736–744, https://doi.org/10.1016/j.cemconres.2012.02.008.Search in Google Scholar

29. Nagul, E. A., McKelvie, I. D., Worsfold, P., Kolev, S. D. Anal. Chim. Acta 2015, 890, 60–82, https://doi.org/10.1016/j.aca.2015.07.030.Search in Google Scholar

30. Plank, J., Zhang-Preße, M., Ivleva, N. P., Niessner, R. Construct. Build. Mater. 2016, 122, 426–434, https://doi.org/10.1016/j.conbuildmat.2016.06.042.Search in Google Scholar

31. Fernández-Carrasco, L., Torrens-Martín, D., Morales, L. M., Martínez-Ramírez, S. Infrared Spectroscopy–Materials Science, Engineering and Technology. In Infrared Spectroscopy—Materials Science, Engineering and Technology; Theophanides, T., Ed. IntechOpen Limited: London, 2012; pp. 369–382, https://doi.org/10.5772/36186.Search in Google Scholar

32. Meier, M. R., Sarigaphuti, M., Sainamthip, P., Plank, J. Construct. Build. Mater. 2015, 93, 877–883, https://doi.org/10.3151/jact.14.102.Search in Google Scholar

33. Sear, R. P. J. Phys. Condens. Matter. 2007, 19, 033101, https://doi.org/10.1088/0953-8984/19/3/033101.Search in Google Scholar

34. Jeknavorian, A. A., Koyata, H., McGuire, D. B., Jovanovic, I. Slump retention in cementitious compositions. US Patent8070875, 2011.Search in Google Scholar

Received: 2020-05-19
Accepted: 2020-07-04
Published Online: 2020-08-22
Published in Print: 2020-09-25

© 2020 Florian Hartmann and Johann Plank published by de Gruyter

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.1515/znb-2020-0087/html
Scroll to top button