Skip to main content
Log in

Complete Mitochondrial Genome of Parabotia bimaculata (Cypriniformes: Cobitidae: Botiinae), an Endemic Riverine Loach in China and Phylogenetic Analysis for Botiinae

  • Published:
Thalassas: An International Journal of Marine Sciences Aims and scope Submit manuscript

Abstract

Parabotia bimaculata is a common small-bodied endemic riverine loach in China. There was still no relevant genetic information for P. bimaculata. Here, we reported that the complete mitochondrial genome of P. bimaculata was a circular molecule of 16,588 bp in length, with two rRNA genes, 13 protein-coding genes, 22 tRNA genes, and a control region (D-loop). The gene composition and the structural arrangement were identical to the other Parabotia species and most of other teleosts. The nucleotide acid composition of the entire mitogenome was 30.8% for A, 27.9% for C, 16.1% for G, and 25.3% for T, with an A + T content of 56.1%. Phylogenetic analyses placed P. bimaculata in a well-supported monophyletic cluster with the other three Parabotia species in Botiidae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Authman MMN, Zaki MS, Khallaf EA, Abbas HH (2015) Use of fish as bio-indicator of the effects of heavy metals pollution. J Aquac Res Dev 6(4):1–13. https://doi.org/10.4172/2155-9546.1000328

  • Avise JC, Neigel JE, Arnold J (1984) Demographic influences on mitochondrial DNA lineage survivorship in animal populations. J Mol Evol 20(2):99–105

    Article  Google Scholar 

  • Bernt M, Donath A, Juhling F, Externbrink F, Florentz C, Fritzsch G, Putz J, Middendorf M, Stadler PF (2013) MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol 69(2):313–319

    Article  Google Scholar 

  • Burland TG (2000) DNASTAR’s Lasergene sequence analysis software. Methods Mol Biol 132:71–91

    Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17(4):540–552

    Article  Google Scholar 

  • Chang YS, Huang FL, Lo TB (1994) The complete nucleotide sequence and gene organization of carp (Cyprinus carpio) mitochondrial genome. J Mol Evol 38(2):138–155

  • Chen JX (1980) A study on the classification of the botoid fishes of China. Zool Res 1(1):23–28

    Google Scholar 

  • Chen Y (1998) Zhongguo dong wu zhi. Ying gu yu gang. Li xing mu. Ke xue chu ban she : Xin hua shu dian Beijing fa xing suo fa xing, Beijing

    Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9(8):772–772

    Article  Google Scholar 

  • Desjardins P, Morais R (1990) Sequence and gene organization of the chicken mitochondrial genome. A novel gene order in higher vertebrates. J Mol Biol 212(4):599–634

    Article  Google Scholar 

  • Froese R, D P (2018) FishBase. from www.fishbase.org

  • Grau JH, Hilgers L, Altmüller J, Šlechtová V, Bohlen J (2017) The complete mitochondrial transcript of the red tail loach Yasuhikotakia modesta as assembled from RNAseq (Teleostei: Botiidae). 2(1):46–47

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52(5):696–704

    Article  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    Google Scholar 

  • He Y, Jones J, Armstrong M, Lamberti F, Moens M (2005) The mitochondrial genome of Xiphinema americanum sensu stricto (Nematoda: Enoplea): considerable economization in the length and structural features of encoded genes. J Mol Evol 61(6):819

    Article  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870

    Article  Google Scholar 

  • Laslett D, Canback B (2008) ARWEN: a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics 24(2):172–175

    Article  Google Scholar 

  • Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25(5):955–964

    Article  Google Scholar 

  • Miya M, Takeshima H, Endo H, Ishiguro NB, Inoue JG, Mukai T, Satoh TP, Yamaguchi M, Kawaguchi A, Mabuchi K, Shirai SM, Nishida M (2003) Major patterns of higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequences. Mol Phylogenet Evol 26(1):121–138

    Article  Google Scholar 

  • Moritz C, And TED, Brown WM (1987) Evolution of animal mitochondrial DNA: relevance for population biology and systematics. Annu Rev Ecol Syst 18(1):269–292

    Article  Google Scholar 

  • Nass MMK, Nass S (1963a) Intramitochondrial fibers with DNA characteristics .1. Fixation and electron staining reactions. J Cell Biol 19(3):593

    Article  Google Scholar 

  • Nass S, Nass MMK (1963b) Intramitochondrial fibers with DNA characteristics .2. enzymatic and other hydrolytic treatments. J Cell Biol 19(3):613

    Article  Google Scholar 

  • Oh J, Kim TW, Kim S (2015) The complete mitochondrial genome of Chaenogobius gulosus (Gobiidae, Perciformes) from the South Sea, Korea. DNA Seq 27(6):1

    Google Scholar 

  • Ojala D, Montoya J, Attardi G (1981) TRNA punctuation model of RNA processing in human mitochondrial. Nature 290(5806):470–474

    Article  Google Scholar 

  • Perna NT, Kocher TD (1995) Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J Mol Evol 41(3):353–358

    Article  Google Scholar 

  • Roberts AP (2005) Gene expression in fish as a first-tier indicator of contaminant exposure in aquatic ecosystems. Miami University, Ohio

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12):1572–1574

    Article  Google Scholar 

  • Saitoh K, Sado T, Mayden RL, Hanzawa N, Nakamura K, Nishida M, Miya M (2006) Mitogenomic evolution and interrelationships of the Cypriniformes (Actinopterygii: Ostariophysi): the first evidence toward resolution of higher-level relationships of the world’s largest freshwater fish clade based on 59 whole mitogenome sequences. J Mol Evol 63(6):826

    Article  Google Scholar 

  • Tang Q, Liu H, Mayden R, Xiong B (2006) Comparison of evolutionary rates in the mitochondrial DNA cytochrome b gene and control region and their implications for phylogeny of the Cobitoidea (Teleostei: Cypriniformes). Mol Phylogenet Evol 39(2):347–357

    Article  Google Scholar 

  • Tian HW, Wang DQ, Jia XY, Duan XB, Chen DQ (2014) The mitogenome of Leptobotia microphthalma (Teleostei, Cypriniformes: Cobitidae). Mitochondrial DNA 29(1):963–969

    Google Scholar 

  • Tian HW, Wang DQ, Jia XY, Duan XB, Chen DQ (2015) Complete mitochodrial genome of the redlip loach Leptobotia rubrilaris (Teleostei, Cypriniformes: Cobitidae). Mitochondrial DNA 26(5):668–669

    Article  Google Scholar 

  • Wan Q, Wei M, Yu P, Yang Y (2014) The complete mitochondrial genome of Parabotia banarescui (Cypriniformes: Cobitidae). Mitochondrial DNA 26(3):1

    Article  Google Scholar 

  • Wei M, Yu P, Yang Y, Wan Q (2016) The complete mitochondrial genome of Parabotia fasciata (Cypriniformes: Cobitidae). Mitochondrial DNA A DNA Mapp Seq Anal 26(3):1831–1832

    Google Scholar 

  • Wolstenholme DR (1992) Animal mitochondrial DNA: structure and evolution. Int Rev Cytol 141(6):173

  • Yang ZY, Liang HW, Li Z, Wang XY, Zou GW (2013) Mitochondrial genome sequence of the Botia superciliaris (Teleostei, Cypriniformes). Mitochondrial DNA 24(4):347–349

    Article  Google Scholar 

  • Yu P, Yang Q, Ding S, Wei M, Yang Y, Wan Q (2016) The complete mitochondrial genome of Botia lohachata (Cypriniformes: Cobitidae). Mitochondrial DNA A DNA Mapp Seq Anal 27(4):2387–2388

  • Zhang DX, Hewitt GM (1997) Insect mitochondrial control region: a review of its structure, evolution and usefulness in evolutionary studies. Biochem Syst Ecol 25(2):99–120

    Article  Google Scholar 

  • Zhong L, Wang M, Li D, Tang S, Zhang T, Bian W, Chen X (2018) Complete mitochondrial genome of freshwater goby Rhinogobius cliffordpopei (Perciformes, Gobiidae): genome characterization and phylogenetic analysis. Genes Genom:1–12

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanjun Shen or Fubin Zhang.

Ethics declarations

Conflict of Interest

Authors have no conflict of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Table S1

Primers used for determination of the Parabotia bimaculata mitogenome. (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Wang, J. & Zhang, F. Complete Mitochondrial Genome of Parabotia bimaculata (Cypriniformes: Cobitidae: Botiinae), an Endemic Riverine Loach in China and Phylogenetic Analysis for Botiinae. Thalassas 36, 387–393 (2020). https://doi.org/10.1007/s41208-020-00200-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41208-020-00200-4

Keywords

Navigation