Skip to main content
Log in

New Complex-Forming Organomineral Support Based on Aluminum Oxyhydroxide Modified with Nitrilotris(methylene phosphonic) Acid

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A method for the surface chemical modification of aluminum oxyhydroxide (boehmite γ-AlO (OH)) by the nitrilotris(methylene phosphonic) acid (NTP) complexing ligand is proposed. The unmodified and NTP-modified boehmites are characterized using X-ray powder diffraction, XPS, and IR spectroscopy; the acid–base and complex-forming properties of surface-grafted NTP are studied. One of the three phosphonic groups of NTP is found to be involved in binding to the boehmite surface. The surface concentration and stepwise dissociation constants of grafted NTP are determined. A study of the nickel(II) sorption as a function of aqueous acidity shows that the modifying coating increases the sorption capacity of boehmite (causing рН50 to shift by one unit toward lower values). In terms of surface complexation theory, nickel(II) sorption from aqueous solutions may be described by models involving ≡Al–ONi+ and ≡Al–ONi(OH) complexes in the case of boehmite and ≡Al–LHi Nii–3 (i = 0, 1, 2, or 3) complexes in the case of NTP-modified boehmite (NTP-boehmite). NTP anchorage to the surface decreases the stability of nickel(II) complexes compared to their analogues in solutions. A mechanism of nickel(II) ion binding by NTP-boehmite is suggested. The prepared new organomineral support can be used to immobilize those metal ions that form stable complexes with phosphonic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. M. Manyangadze, N. H. M. Chikuruwo, T. B. Narsaiah, et al., S. Afr. J. Chem. Eng. 31, 25 (2020). https://doi.org/10.1016/j.sajce.2019.11.003

    Article  Google Scholar 

  2. A. Y. Olenin and G. V. Lisichkin, Russ. J. Gen. Chem. 89, 1101 (2019). https://doi.org/10.1134/S1070363219070168

    Article  Google Scholar 

  3. Chemistry of Grafted Surface Compounds, Ed. by G. V. Lisichkin (Fizmatlitgiz, Moscow, 2003) [in Russian].

    Google Scholar 

  4. P. G. Mihgalyov and G. V. Lisichkin, Russ. Chem. Rev. 75, 541 (2006). https://doi.org/10.1002/chin.200645245

    Article  Google Scholar 

  5. C. Queffélec, M. Petit, P. Janvier, et al., Chem. Rev. 112, 3777 (2012). https://doi.org/10.1021/cr20042121

  6. S. P. Pujari, L. Scheres, T. M. Marcelis, and H. Zuilhof, Angew. Chem., Int. Ed. Engl. 51, 6322 (2014). https://doi.org/org/10.1002/anie.201306709

    Article  Google Scholar 

  7. G. V. Lisichkin and A. Y. Olenin, Russ. J. Appl. Chem. 93, 1 (2020). https://doi.org/10.31857/S0044461820010016

  8. M. Mohapatra and P. Pramanic, Colloids and Surfaces: PhysicoChem. Eng. Aspects 339, 35 (2009). https://doi.org/10.1016/j.colsurfa.2009.01.009

    Article  CAS  Google Scholar 

  9. J. Wang, Y. Liu, Z. Wang, P. Wang, et al., Int. J. Hydrogen En. 44, 16575 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.192

    Article  CAS  Google Scholar 

  10. B. Nowack and A. T. Stone, J. Colloid Interface Sci. 214, 20 (1999). https://doi.org/10.1006/jcis.1999.6111

    Article  CAS  PubMed  Google Scholar 

  11. Yu. V. Kholin, V. N. Zaitsev, G. N. Zaitseva, et al., Russ. J. Inorg. Chem. 62, 275 (1995).

    Google Scholar 

  12. M. Das, D. Mishra, P. Dhak, et al., Small 5, 2883 (2009). https://doi.org/10.1002/smll.200901219

    Article  CAS  PubMed  Google Scholar 

  13. M. Zenobi and E.H. Rueda, Quim. Nova 35, 505 (2012). https://doi.org/10.1590/s0100-40422012000300012

    Article  CAS  Google Scholar 

  14. T. N. Kropacheva, A. S. Antonova, and V. I. Kornev, Mendeleev Commun. 29, 358 (2019). https://doi.org/10.1016/j.mencom.2019.05.040

    Article  Google Scholar 

  15. L. S. Kostenko, S. A. Akhmedov, and V. N. Zaitsev, Metody Ob”ekty Khim. Anal. 1, 116 (2006). https://doi.org/10.17721/moca

    Article  Google Scholar 

  16. The Environmental Chemistry of Aluminum, Ed. by G. Sposito (CRC Press, 1996).

    Google Scholar 

  17. L. Rajabi and A. Derakhshan, Sci. Adv. Mater. 2, 163 (2010). https://doi.org/10.1166/sam.2010.1063

    Article  CAS  Google Scholar 

  18. Stability Constants Computation Programs: Hyperquad 2008, Hyperquad Simulation and Speciation HySS2009. www.hyperquad.co.uk

  19. PND F 14.1:46-9: Quantitative Chemical Analysis of Waters (Moscow, 1996) [in Russian].

  20. R. Zhao, P. Rupper, and S. Gaan, Coatings 7, 133 (2017). https://doi.org/10.3390/coatings7090133

    Article  CAS  Google Scholar 

  21. M. C. Zenobi, C. V. Luengo, M. J. Avena, and E. H. Rueda, Spectrochim. Acta A 75, 1283 (2010). https://doi.org/10.1016/j.ssa.2009.12.059

    Article  Google Scholar 

  22. B. V. A. Rao, M. V. Rao, S. S. Rao, and B. Sreedhar, J. Surf. Eng. Mater. Adv. Technol. 3, 28 (2013). https://doi.org/10.4236/jsemat.2013.31005

    Article  CAS  Google Scholar 

  23. S. H. Wang, C. S. Liu, F. J. Shan, and G. C. Qi, Acta Metall. Sin. (Engl. Lett.) 21, 355 (2008). https://doi.org/10.1016/s1006-7191(08)60059-9

  24. T. N. Kropacheva, A. S. Antonova, and V. I. Kornev, Russ. J. Inorg. Chem. 62, 150 (2017). https://doi.org/10.1134/S0036023617020103

    Article  CAS  Google Scholar 

  25. L. D. Pettit and H. K. J. Powell, IUPAC Stability Constants Database, Version 4.74 (Academic Software). www.acadsoft.co.uk.

  26. V. Deluchat, J.-C. Bollinger, B. Serpaud, and C. Caullet, Talanta 44, 897 (1997). https://doi.org/10.1016/S0039-9140(96)02136-4

    Article  CAS  PubMed  Google Scholar 

  27. K. Sawada, T. Araki, T. Suzuki, and K. Doi, Inorg. Chem. 28, 2687 (1989). https://doi.org/10.1021/ic00312a036

    Article  CAS  Google Scholar 

  28. N. V. Somov, F. F. Chausov, R. M. Zakirova, and I. V. Fedotova, Crystallogr. Rep. 61, 238 (2016). https://doi.org/10.1134/s1063774516020243

    Article  Google Scholar 

  29. P. Pavlova and L. Sigg, Water Res. 22, 1571 (1988). https://doi.org/10.1016/0043-1354(88)90170-4

    Article  CAS  Google Scholar 

  30. D. G. Kinniburgh, M. L. Jackson, and J. K. Syers, Soil Sci. Soc. Am. J. 40, 796 (1976). https://doi.org/10.2136/sssaj1976.03615995004000050047x

    Article  CAS  Google Scholar 

  31. Surface Complexation Modelling, Ed. by J. Lutzenkirchen (Academic Press, 2006).

    Google Scholar 

  32. M. A. Islam, M. J. Angove, and D. W. Morton, J. Water Process Eng. 32, 100964 (2019). https://doi.org/10.1016/j.jwpe.2019.100964

    Article  Google Scholar 

  33. L. B. Zubakova, A. S. Tevlina, and A. B. Davankov, Synthetic Ion-Exchange Materials (Khimiya, Moscow, 1978) [in Russian].

    Google Scholar 

  34. A. W. Trochimczuk and J. Jezierska, J. Inorg. Organomet. Polym. 10, 81 (2000). https://doi.org/10.1023/A:1009423925041

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are thankful to R.M. Zakirova, Candidate of Science in physics and mathematics, Leading Engineer of the Laboratory of X-ray Structural Analysis, at Educational and Research Institute of Experimental Natural Sciences; Institute of Mathematics, Information Technology and Physics; Udmurt State University, for help with X-ray analysis.

Funding

The study used equipment of the shared facilities center at Udmurt State University and the Center for Physical and Physicochemical Methods of Analysis and Characterization of Surfaces, Nanostructures, Materials, and Articles of Manufacture at the Udmurt Federal Research Center, Ural Branch of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. N. Kropacheva.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by O. Fedorova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kropacheva, T.N., Gazizyanova, A.R. & Gil’mutdinov, F.Z. New Complex-Forming Organomineral Support Based on Aluminum Oxyhydroxide Modified with Nitrilotris(methylene phosphonic) Acid. Russ. J. Inorg. Chem. 65, 1150–1159 (2020). https://doi.org/10.1134/S0036023620080070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620080070

Keywords:

Navigation