Skip to main content
Log in

Topoisomerase I Inhibition, DNA Photocleavage Activity, and G-Quadruplex DNA ‘Light Switch’ Based on Nitro-Substituted Ruthenium Complexes

  • COORDINATION COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Two ruthenium complexes containing nitro-substituted ligand, [Ru(bpy)2(hnpip)](PF6)2 (1) and [Ru(phen)2(hnpip)](PF6)2 (2) (bpy = 2,2'-bipyridine; phen = 1,10-phenanthroline; hnpip = 2-(3-hydroxyl- 4-nitrophenyl)imidazo[4,5-f][1,10-phenanthroline] were synthesized and characterized. DNA binding behaviors were studied by luminescent titration, UV-vis titration, FRET (FRET = Fluorescence resonance energy transfer) and molecular docking experiments. Complex 2 exhibited “light switch” effect upon addition of G-quadruplex DNA and displayed fluorescent selectivity towards G-quadruplex DNA over other DNAs in the presence of K4[Fe(CN)6]. Fluorescence experiments, FRET experiments and molecular docking results indicated that the selectivity may be attributed to protection of nitro group from water, DNA affinity and the difference in DNA structures. Furthermore, both complexes were found to cleave DNA under irradiation by the formation of singlet oxygen. DNA topoisomerase inhibition experiments indicated that complex 2 exhibited higher topoisomerase I inhibition activity (IC50 = 18 μM) than complex 1 (IC50 = 50 μM). Docking studies revealed that complex 2 stabilized Top1cc complex via π–π interaction and the formation of hydrogen bond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. L. F. Liu, Ann. Rev. Biochem. 58, 351 (1989). https://doi.org/10.1146/annurev.bi.58.070189.002031

    Article  CAS  PubMed  Google Scholar 

  2. N. M. Baker, R. Rajan, and A. Mondragon, Nucleic Acids Res. 37, 693 (2009). https://doi.org/10.1093/nar/gkn1009

    Article  CAS  PubMed  Google Scholar 

  3. G. Capranico, J. Marinello, and G. Chillemi, J. Med. Chem. 60, 2169 (2017). https://doi.org/10.1021/acs.jmedchem.6b00966

    Article  CAS  PubMed  Google Scholar 

  4. M. Li and Y. Liu, Genom. Proteom. Bioinf. 14, 166(2016). https://doi.org/10.1016/j.gpb.2016.02.004

    Article  Google Scholar 

  5. Y. Pommier, Y. Sun, S. N. Huang, et al., Nat. Rev. Mol. Cell Biol. 17, 703 (2016). https://doi.org/10.1038/nrm.2016.111

    Article  CAS  PubMed  Google Scholar 

  6. Y. Pommier, E. Leo, H. Zhang, et al., Chem. Biol. 17, 421 (2010). https://doi.org/10.1016/j.chembiol.2010.04.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Y. Pommier, C.Marchand, Nat. Rev. Drug Discovery 11, 25 (2012). https://doi.org/10.1038/nrd3404

    Article  CAS  Google Scholar 

  8. K. E. Hevener, T. A.Verstak, K. E. Lutat, et al., Acta Pharm. Sin. 8, 844 (2018). https://doi.org/10.1016/j.apsb.2018.07.008

    Article  Google Scholar 

  9. S. M. Cuya, M. A. Bjornsti, and R. C. A. M. Waardenburg, Cancer Chemoth. Pharm. 80, 1 (2017). https://doi.org/10.1007/s00280-017-3334-5

    Article  CAS  Google Scholar 

  10. V. Nagaraja, A.A. Godbole, and S. R. Henderson, Drug Discov. Today, 22, 510 (2017). https://doi.org/10.1016/j.drudis.2016.11.006

    Article  CAS  PubMed  Google Scholar 

  11. M. K. Kathiravan, A. N. Kale, and S. Nilewar, Mini-Rev. Med. Chem. 16, 1219 (2016). https://doi.org/10.2174/1389557516666160822110819

    Article  CAS  PubMed  Google Scholar 

  12. K. Gokduman, Curr. Drug Targets 16, 1928 (2016). https://doi.org/10.2174/1389450117666160502151707

    Article  CAS  Google Scholar 

  13. Y. Pommier, Chem. Rev. 109, 2894 (2009). https://doi.org/10.1021/cr900097c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. L. Wang, Z. Li, L. Zhang, et al., Pestic. Biochem. Physiol. 139, 46 (2017). https://doi.org/10.1016/j.pestbp.2017.04.008

    Article  CAS  PubMed  Google Scholar 

  15. M. E. Wall, M. C. Wani, C. E. Cooke, et al., J. Am. Chem. Soc. 88, 3888 (1966). https://doi.org/10.1021/ja00968a057

    Article  CAS  Google Scholar 

  16. Y. M. Sun, J. Li, H. Zhao, et al., J. Inorg. Biochem. 163 88 (2016). https://doi.org/10.1016/j.jinorgbio.2016.04.028

    Article  CAS  PubMed  Google Scholar 

  17. G. L. Liao, X. Chen, J. C. Wu, et al., Dalton Trans. 44, 15145 (2015). https://doi.org/10.1039/C4DT03585B

    Article  CAS  PubMed  Google Scholar 

  18. R. Gaur and M. Usman, Spectrochim. Acta Part A. 209, 100 (2019). https://doi.org/10.1016/j.saa.2018.10.035

    Article  CAS  Google Scholar 

  19. X. W. Liu, J. Huang, Y. X. Tang, et al., Appl. Organomet. Chem. 32, e4423 (2018). https://doi.org/10.1002/aoc.4423

    Article  CAS  Google Scholar 

  20. A. Mushtaq, S. Ali, M. N. Tahir, et al., Russ. J. Inorg. Chem. 64, 1365 (2019). https://doi.org/10.1134/S0036023619110147

    Article  Google Scholar 

  21. Y. C. Liu, Y. Y. Li, H. L. Qi, et al., Russ. J. Coord. Chem. 45, 446 (2019). https://doi.org/10.1134/S1070328419060034

    Article  CAS  Google Scholar 

  22. A. K. Todd, S. M. Haider, G. N. Parkinson, et al., Nucleic Acids Res. 35, 5799 (2007). https://doi.org/10.1093/nar/gkm609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. J. Dash, P. S. Shirude, S. D. Hsu, et al., J. Am. Chem. Soc. 130, 15950 (2008). https://doi.org/10.1021/ja8046552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. K. M. Miller, R. Rodriguez, Expert Rev. Clin. Pharmacol. 4, 139 (2011). https://doi.org/10.1586/ecp.11.4

    Article  CAS  PubMed  Google Scholar 

  25. H.J. Lipps and D. Rhodes, Trends Cell Boil. 19, 414(2009). https://doi.org/10.1016/j.tcb.2009.05.002

    Article  CAS  Google Scholar 

  26. S. Balasubramanian, L. H. Hurley, and S. Neidle, Nat. Rev. Drug. Discov. 10, 261 (2011). https://doi.org/10.1038/nrd3428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. S. Balasubramanian and S. Neidle, Curr. Opin. Chem. Boil. 13, 345 (2009). https://doi.org/10.1016/j.cbpa.2009.04.637

    Article  CAS  Google Scholar 

  28. S. Neidle, FEBS J. 277, 1118(2010). https://doi.org/10.1111/j.1742-4658.2009.07463.x

    Article  CAS  PubMed  Google Scholar 

  29. D. L. Ma, Z. Zhang, M. Wang, et al., Chem. Biol. 22, 812 (2015). https://doi.org/10.1016/j.chembiol.2015.06.016

    Article  CAS  PubMed  Google Scholar 

  30. D. L. Ma, M. Wang, S. Lin, et al., Curr. Top. Med. Chem. 15, 1957 (2015). https://doi.org/10.2174/1568026615666150515150106

    Article  CAS  PubMed  Google Scholar 

  31. B. R. Vummidi, J. Alzeer, and N. W. Luedtke, ChembioChem. 14, 540 (2013). https://doi.org/10.1002/cbic.201200612

    Article  CAS  PubMed  Google Scholar 

  32. M. Wang, Z. F. Mao, T. S. Kang, et al., Chem. Sci. 7, 2516 (2016). https://doi.org/10.1039/C6SC00001K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. G. L. Liao, X. Chen, L. N. Ji, et al., Chem. Commun. 48, 10781 (2012). https://doi.org/10.1039/C2CC36039J

    Article  CAS  Google Scholar 

  34. D. Saadallah, M. Bellakhal, S. Amor, et al., Chem. Eur. J. 23, 4967 (2017). https://doi.org/10.1002/chem.201605948

    Article  CAS  PubMed  Google Scholar 

  35. L. Xu, D. Zhang, J. Huang, et al., Chem. Commun. 46, 743 (2010). https://doi.org/10.1039/B918045A

    Article  CAS  Google Scholar 

  36. L. Li, H. M. Liu, X. K. Liu, et al., RSC Adv. 7, 23727 (2017). https://doi.org/10.1039/c7ra01853c

    Article  CAS  Google Scholar 

  37. X. Dang and J. T. Hupp, J. Photochem. Photobiol. A. 143, 251 (2001). https://doi.org/10.1016/S1010-6030(01)00484-1

    Article  CAS  Google Scholar 

  38. J. G. Liu, B. H. Ye, H. Chao, et al., Chem. Lett. 28, 1085 (1999). https://doi.org/10.1246/cl.1999.1085

    Article  Google Scholar 

  39. J. D. McGhee and P.H. von Hippel, J. Mol. Biol. 86, 469 (1974). https://doi.org/10.1016/0022-2836(74)90031-X

    Article  CAS  PubMed  Google Scholar 

  40. R. M. Hartshorn and J. K. Barton, J. Am. Chem. Soc. 114, 5919 (1992). https://doi.org/10.1021/ja00041a002

    Article  CAS  Google Scholar 

  41. E. A. Steck and A. R. Day, J. Am. Chem. Soc. 65, 452(1943). https://doi.org/10.1021/ja01243a043

    Article  CAS  Google Scholar 

  42. L. He, X. Chen, Z. Y. Meng, et al., Chem. Commun. 52, 8095(2016). https://doi.org/10.1039/c6cc03117j

    Article  CAS  Google Scholar 

  43. J. L. Yao, X. Gao, W. L. Sun, et al., Inorg. Chem. 51, 12591(2012). https://doi.org/10.1021/ic301305q

    Article  CAS  PubMed  Google Scholar 

  44. G. Shi, S. Monro, R. Hennigar, et al., Coord. Chem. Rev. 282-283, 127(2015). https://doi.org/10.1016/j.ccr.2014.04.012

    Article  CAS  Google Scholar 

  45. D. A. Smithen, H. Yin, M. H. R. Beh, et al., Inorg. Chem. 56, 4121(2017). doi. https://doi.org/10.1021/acs.inorgchem.7b00072

    Article  CAS  PubMed  Google Scholar 

  46. R. Nilsson, P. B. Merkel, D.R. Kearns. Photochem. Photobiol. 16, 117(1972). https://doi.org/10.1111/j.1751-1097.1972.tb07343.x

    Article  CAS  PubMed  Google Scholar 

  47. F. Jensen and C. S. Foote, J. Am. Chem. Soc. 109, 1478(1987). https://doi.org/10.1021/ja00239a030

    Article  CAS  Google Scholar 

  48. A. A. Abdel-ShaE, P. D. Beer, R. J. Mortimer, et al., J. Phys. Chem. A 104, 192 (2000). https://doi.org/10.1021/jp991876z

    Article  CAS  Google Scholar 

  49. Q. X. Zhou, W. H. Lei, C. Li, et al., New J. Chem. 34, 137 (2010). https://doi.org/10.1039/B9NJ00465C

    Article  CAS  Google Scholar 

  50. Y. J. Sun, L. . Joyce, N. M. Dickson, et al., Chem. Commun. 46, 2426 (2010). https://doi.org/10.1039/B925574E

    Article  CAS  Google Scholar 

  51. X. W. Liu, L. C. Xu, H. Li, et al., J. Mol. Struct. 920, 163 (2009). https://doi.org/10.1016/j.molstruc.2008.10.038

    Article  CAS  Google Scholar 

  52. H. J. Yu, S. M. Huang, L. Y. Li, et al., J. Inorg. Biochem. 103, 881 (2009). https://doi.org/10.1016/j.jinorgbio.2009.03.005

    Article  CAS  PubMed  Google Scholar 

  53. H. J. Yu, H. Chao, L. Jiang, et al., Inorg. Chem. Commun. 11, 553 (2008). https://doi.org/10.1016/j.inoche.2008.02.008

    Article  CAS  Google Scholar 

  54. X. W. Liu, Y. M. Shen, J. S. Shu, et al., J. Fluoresc. 25, 1527 (2015). https://doi.org/10.1007/s10895-015-1644-8

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Research Foundation of Education Bureau of Hunan Province (16A145) and State Key Laboratory of Coordination Chemistry (SKLCC1920).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Wen Liu.

Ethics declarations

The authors declare that they have no conflict of interest.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue-Wen Liu, Liu, NY., Deng, YQ. et al. Topoisomerase I Inhibition, DNA Photocleavage Activity, and G-Quadruplex DNA ‘Light Switch’ Based on Nitro-Substituted Ruthenium Complexes. Russ. J. Inorg. Chem. 65, 1186–1195 (2020). https://doi.org/10.1134/S0036023620080094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620080094

Keywords:

Navigation