Skip to main content
Log in

Nano-ZnO Impregnated on Starch—A Highly Efficient Heterogeneous Bio-Based Catalyst for One-Pot Synthesis of Pyranopyrimidinone and Xanthene Derivatives as Potential Antibacterial Agents

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

A new method has been proposed for the synthesis of pyranopyrimidinone and xanthene derivatives using zinc oxide–starch nanocomposite as catalyst under microwave irradiation. The ZnO–starch nanocomposite was characterized by X-ray diffraction and scanning electron microscopy data, and the size of the ZnO-starch nanocomposite particles was estimated at 70–90 nm. The catalyst was used in the three-component condensation of aromatic aldehydes with barbituric acid and malononitrile and the 1:2 condensation of aromatic aldehydes with naphthalen-2-ol to obtain pyranopyrimidinone and xanthene derivatives, respectively. The catalyst can be reused several times without loss of catalytic activity. The proposed procedure utilizes affordable and inexpensive materials, provides excellent yields in short reaction time, and is eco-friendly, which makes it more economic than conventional methods. The antibacterial activity of the synthesized compounds was evaluated against M. luteus and P. aeruginosa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Scheme
Scheme
Scheme
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Zolfigol, M.A., Nasrabadi, R.A., and Baghery, S., Appl. Org. Chem., 2016, vol. 30, p. 273. https://doi.org/10.1002/aoc.3428

    Article  CAS  Google Scholar 

  2. Pasha, M.A. and Jayashankara, V.P., Bioorg. Med. Chem. Lett., 2007, vol. 17, p. 621. https://doi.org/10.1016/j.bmcl.2006.11.009

    Article  CAS  PubMed  Google Scholar 

  3. Sokolova, N.B., Lisina, I.V., and Tamoshauskas, N.A., Russ. J. Appl. Chem., 2011, vol. 84, p. 670. https://doi.org/10.1134/S1070427211040197

    Article  CAS  Google Scholar 

  4. Huang, H., Yao, Y., Lin, Q., Zhao, J., Hua, C., and Gou, X.,Russ. J. Gen. Chem., 2016, vol. 86, p. 934. https://doi.org/10.1134/S1070363216040307

    Article  CAS  Google Scholar 

  5. Hanna, M.M., Eur. J. Med. Chem., 2012, vol. 55, p. 12. https://doi.org/10.1016/j.ejmech.2012.06.048

    Article  CAS  PubMed  Google Scholar 

  6. Shinde, S.V., Jadhav, W.N., and Karade, N.N., Orient. J. Chem., 2010, vol. 26, p. 307.

    CAS  Google Scholar 

  7. Karimi-Jaberi, Z. and Hashemi, M.M., Monatsh. Chem., 2008, vol. 139, p. 605. https://doi.org/10.1007/s00706-007-0786-z

    Article  CAS  Google Scholar 

  8. Lichtner, R.B., Hutchinson, G., and Hellmann, K., Eur. J. Cancer Clin. Oncol., 1989, vol. 25, p. 945. https://doi.org/10.1016/0277-5379(89)90152-1

    Article  CAS  PubMed  Google Scholar 

  9. Casiraghi, G., Casnati, G., and Cornia, M., Tetrahedron Lett., 1973, vol. 14, p. 679. https://doi.org/10.1016/S0040-4039(00)72432-4

    Article  Google Scholar 

  10. Wang, J.Q. and Harvey, R.G., Tetrahedron, 2002, vol. 58, p. 5927. https://doi.org/10.1016/S0040-4020(02)00534-3

    Article  CAS  Google Scholar 

  11. Jha, A. and Beal, J., Tetrahedron Lett., 2004, vol. 45, p. 8999. https://doi.org/10.1016/j.tetlet.2004.10.046

    Article  CAS  Google Scholar 

  12. Kobayashi, S., Busujima, T., and Nagayama, S., Chem. Eur. J., 2000, vol. 6, p. 3491. https://doi.org/10.1002/1521-3765(20001002)6:19<3491::AID-CHEM3491>3.0.CO;2-P

    Article  CAS  PubMed  Google Scholar 

  13. Rostamizadeh, S., Shadjou, N., Amani, A.M., and Balalaie, S.,Chin. Chem. Lett., 2008, vol. 19, p. 1151. https://doi.org/10.1016/j.cclet.2008.07.026

    Article  CAS  Google Scholar 

  14. Soleimani, E., Khodaei, M.M., and Koshvandi, A.T.K., Chin. Chem. Lett., 2011, vol. 22, p. 927. https://doi.org/10.1016/j.cclet.2011.01.012

    Article  CAS  Google Scholar 

  15. Gong, K., Fang, D., Wang, H.L., Zhou, X.L., and Liu, Z.L.,Dyes Pigm., 2009, vol. 80, p. 30. https://doi.org/10.1016/j.dyepig.2008.02.011

    Article  CAS  Google Scholar 

  16. Hajipour, A.R., Ghayeb, Y., Sheikhan, N., and Ruoho, A.E.,Synlett, 2010, vol. 2010, no. 5, p. 741. https://doi.org/10.1055/s-0029-1219399

    Article  CAS  Google Scholar 

  17. Rahmatpour, A., Monatsh. Chem., 2011, vol. 142, p. 1259. https://doi.org/10.1007/s00706-011-0537-z

    Article  CAS  Google Scholar 

  18. Ghassamipour, S. and Sardarian, A.R., J. Heterocycl. Chem., 2012, vol. 49, p. 669. https://doi.org/10.1002/jhet.780

    Article  CAS  Google Scholar 

  19. Wang, J.Q. and Harvey, R.G., Tetrahedron, 2002, vol. 58, p. 5927. https://doi.org/10.1016/S0040-4020(02)00534-3

    Article  CAS  Google Scholar 

  20. Stetter, H., Newer Methods of Preparative Organic Chemistry, Foerst, W., Ed., New York: Academic, 1963, vol. 2, p. 51. https://doi.org/10.1016/B978-0-12-395648-4.50010-6

  21. Kumari, P., Yathindranath, V., and Chauhan, S.M.S., Synth. Commun., 2008, vol. 38, p. 637. https://doi.org/10.1080/00397910701798234

    Article  CAS  Google Scholar 

  22. Tankam, T., Srisa, J., Sukwattanasinitt, M., and Wacharasindhu, S.,J. Org. Chem., 2018, vol. 83, p. 11936. https://doi.org/10.1021/acs.joc.8b01824

    Article  CAS  PubMed  Google Scholar 

  23. Balakrishna, C., Kandula, V., Gudipati, R., Yennam, S., Devi, P.U., and Behera, M., Synlett, 2018, vol. 29, p. 1087. https://doi.org/10.1055/s-0036-1591898

    Article  CAS  Google Scholar 

  24. Pourshamsian, K., J. Chem. Health Risks, 2018, vol. 8, p. 305. https://doi.org/10.22034/jchr.2018.544457

    Article  CAS  Google Scholar 

  25. Montazeri, N., Pourshamsian, K., Rezaei, H., and Fouladi, M.,Asian J. Chem., 2013, vol. 25, p. 3463. dx.doi.org/10.14233/ajchem.2013

    Article  CAS  Google Scholar 

  26. Montazeri, N., Pourshamsian, K., Bayazi, M., and Kabiri, S.,Asian J. Chem., 2013, vol. 25, p. 3373. https://doi.org/10.14233/ajchem.2013.13774

    Article  CAS  Google Scholar 

  27. Montazeri, N., Pourshamsian, K., Yosefiyan, S., and Momeni, S.S.,J. Chem. Sci., 2012, vol. 124, p. 883. https://doi.org/10.1007/s12039-012-0260-2

    Article  CAS  Google Scholar 

  28. Yavari, I., Asgari, S.A., Pourshamsian, K., and Bagheri, M.,J. Sulfur Chem., 2007, vol. 28, p. 477. https://doi.org/10.1080/17415990701471364

    Article  CAS  Google Scholar 

  29. Tavakolifard, S., Biazar, E., Pourshamsian, K., and Moslemin, M.H.,Artif. Cells, Nanomed., Biotechnol., 2016, vol. 44, p. 1247. https://doi.org/10.3109/21691401.2015.1019670

    Article  CAS  Google Scholar 

  30. Jinxia, M., Wenhua, Z., Yajun, T., and Zhiguo, W., Nanoscale Res. Lett., 2016, vol. 11, p. 200. https://doi.org/10.1186/s11671-016-1404-y

    Article  CAS  Google Scholar 

  31. Darder, M., Aranda, P., and Ruiz-Hitzky, E., Adv. Mater., 2007, vol. 19, p. 1309. https://doi.org/10.1002/adma.200602328

    Article  CAS  Google Scholar 

  32. Seoyoun, S. and Jyongsik, J., Chem. Commun., 2007, vol. 22, p. 4230. https://doi.org/10.1039/B707706H

  33. Albadi, J., Mansournezhad, A., and Sadeghi, T., Res. Chem. Intermed., 2015, vol. 41, p. 8317. https://doi.org/10.1007/s11164-014-1894-0

    Article  CAS  Google Scholar 

  34. Majid, M.H., Hamideh, A., Khadijeh, B., Mina, S., Hossein, A.O., and Fatemeh, F.B., Bull. Chem. Soc. Ethiop., 2011, vol. 25, p. 399. https://doi.org/10.4314/bcse.v25i3.68592

    Article  Google Scholar 

  35. Shaterian, H.R., Doostmohammadi, R., and Ghashang, M., Chin. J. Chem., 2008, vol. 26, p. 338. https://doi.org/10.1002/cjoc.200890065

    Article  CAS  Google Scholar 

  36. Fei-Oing, D., Li-Tao, A., and Jian-Ping, Z., Chin. J. Chem., 2007, vol. 25, p. 645. https://doi.org/10.1002/cjoc.200790120

    Article  Google Scholar 

  37. Zakeri, M., Heravi, M., Saeedi, M., Karimi, N., Oskooie, H.A., and Tavakoli, N., Chin. J. Chem., 2011, vol. 29, p. 1441. https://doi.org/10.1002/cjoc.201180240

    Article  CAS  Google Scholar 

  38. Wang, L.M., Sui, Y., and Zhang, L., Chin. J. Chem., 2008, vol. 26, p. 1105. https://doi.org/10.1002/cjoc.200890196

    Article  CAS  Google Scholar 

  39. Yoshioka, E., Nishimura, M., Nakazawa, T., Kohtani, S., and Miyabe, H., J. Org. Chem., 2015, vol. 80, p. 8464. https://doi.org/10.1021/acs.joc.5b01452

    Article  CAS  PubMed  Google Scholar 

  40. Zang, H., Zhang, Y., Cheng, B., Zhang, W., Xu, X., and Ren, Y.,Chin. J. Chem., 2012, vol. 30, p. 362. https://doi.org/10.1002/cjoc.201180488

    Article  CAS  Google Scholar 

  41. Yuling, L., Baixiang, D.U., Xiaoping, X.U., Daqing, S.H.I., and Shunjun, J.I., Chin. J. Chem., 2009, vol. 27, p. 1563. https://doi.org/10.1002/cjoc.200990264

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Pourshamsian.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amininia, A., Pourshamsian, K. & Sadeghi, B. Nano-ZnO Impregnated on Starch—A Highly Efficient Heterogeneous Bio-Based Catalyst for One-Pot Synthesis of Pyranopyrimidinone and Xanthene Derivatives as Potential Antibacterial Agents. Russ J Org Chem 56, 1279–1288 (2020). https://doi.org/10.1134/S1070428020070234

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428020070234

Keywords:

Navigation