Skip to main content
Log in

Effect of Input Power and Process Time on Conversion of Pure and Mixed Plastics into Fuels Through Microwave-Metal Interaction Pyrolysis

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

This study investigated the effect of input power and process time on microwave-metal interaction pyrolysis of pure plastics (PS, PP, LDPE) and their blends into liquid and gaseous fuels. The microwave power and time were varied to pyrolyze 20 g of each sample in an iron coil. The pure PS underwent maximum conversion into fuels followed by PP and LDPE. Under optimized microwave power (2100–2500 W), PS produced 88.7% oil after 19 min of reaction time, PP produced 54.65% oil at 23 min of reaction time and LDPE produced 30.15% oil after 26 min of reaction time. Pure PS and PP showed high conversion efficiency of 95.40% and 95.10%, respectively, into liquid and gaseous fuels. Pure LDPE showed only 54.30% conversion into fuels by producing large quantity of waxy residue. In blended form, PS-PP blend revealed highest conversion of 65.67% into fuels followed by PS-PP-LDPE blend (57.23%), PS-LDPE blend (46.52%) and PP-LDPE blend (28.08%). Based on mass balance and percentage conversion, PS-PP blend showed maximum conversion of 96.25% whereas PP-LDPE showed minimum conversion of 74.99%. Higher microwave powers within optimal range produced better yield of liquid fuel in shorter time periods. The pyrolytic oils contained some useful aromatic and aliphatic hydrocarbons (C8–C16).

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kunwar, B., Cheng, H.N., Chandrashekaran, S.R., Sharma, B.K.: Plastics to fuel: a review. Renew. Sustain. Energy Rev. 54, 421–428 (2016). https://doi.org/10.1016/j.rser.2015.10.015

    Article  Google Scholar 

  2. Aguado, J., Serrano, D.P., Escola, J.M.: Fuels from waste plastics by thermal and catalytic processes: a review. Ind. Eng. Chem. Res. 47, 7982–7992 (2008). https://doi.org/10.1021/ie800393w

    Article  Google Scholar 

  3. Zhang, X., Lei, H., Yadavalli, G., Zhu, L., Wei, Y., Liu, Y.: Gasoline-range hydrocarbons produced from microwave-induced pyrolysis of low-density polyethylene over ZSM-5. Fuel 144, 33–42 (2015). https://doi.org/10.1016/j.fuel.2014.12.013

    Article  Google Scholar 

  4. Hussain, Z., Sardar, A., Khan, K.M., Naz, M.Y., Sulaiman, S.A., Shukrullah, S.: Construction of rechargeable protein battery from mixed-waste processing of fish scales and chicken feathers. Waste Biomass Valoriz. 11, 2129–2135 (2020). https://doi.org/10.1007/s12649-018-0535-z

    Article  Google Scholar 

  5. Dayana, S., Sharuddin, A., Abnisa, F., Mohd, W., Wan, A., Anuar Sharuddin, S.D., Abnisa, F., Wan Daud, W.M.A., Aroua, M.K.: A review on pyrolysis of plastic wastes. Energy Convers. Manag. 115, 308–326 (2016). https://doi.org/10.1016/j.enconman.2016.02.037

    Article  Google Scholar 

  6. Sorum, L., Gronli, M.G., Hustad, J.E., Sùrum, L., Grùnli, M.G., Hustad, J.E.: Pyrolysis characteristics and kinetics of municipal solid wastes. Fuel 80, 1217–1227 (2001). https://doi.org/10.1016/S0016-2361(00)00218-0

    Article  Google Scholar 

  7. Panda, A.K., Singh, R.K., Mishra, D.K.: Thermolysis of waste plastics to liquid fuel. A suitable method for plastic waste management and manufacture of value added products-A world prospective. Renew. Sustain. Energy Rev. 14, 233–248 (2010). https://doi.org/10.1016/j.rser.2009.07.005

    Article  Google Scholar 

  8. Hussain, Z., Sulaiman, S.A., Khan, A., Khan, K.M., Perveen, S., Naz, M.Y.: Two-step pyrolysis of spirogyra for fuels using cement catalytic. Waste Biomass Valoriz. 7, 1481–1489 (2016). https://doi.org/10.1007/s12649-016-9552-y

    Article  Google Scholar 

  9. Undri, A., Rosi, L., Frediani, M., Frediani, P.: Efficient disposal of waste polyolefins through microwave assisted pyrolysis. Fuel 116, 662–671 (2014). https://doi.org/10.1016/j.fuel.2013.08.037

    Article  Google Scholar 

  10. Aishwarya, K.N., Sindhu, N.: Microwave assisted pyrolysis of plastic waste. Procedia Technol. 25, 990–997 (2016). https://doi.org/10.1016/j.protcy.2016.08.197

    Article  Google Scholar 

  11. Hussain, Z., Khan, K.M., Hussain, K.: Microwave-metal interaction pyrolysis of polystyrene. J. Anal. Appl. Pyrolysis 89, 39–43 (2010). https://doi.org/10.1016/j.jaap.2010.05.003

    Article  Google Scholar 

  12. Zheng, X., Chen, C., Ying, Z., Wang, B., Chi, Y.: Py-GC/MS study on tar formation characteristics of MSW key component pyrolysis. Waste Biomass Valoriz. 8, 313–319 (2017). https://doi.org/10.1007/s12649-016-9596-z

    Article  Google Scholar 

  13. Doucet, J., Laviolette, J.-P., Farag, S., Chaouki, J.: Distributed microwave pyrolysis of domestic waste. Waste Biomass Valoriz. 5, 1–10 (2014). https://doi.org/10.1007/s12649-013-9216-0

    Article  Google Scholar 

  14. Al-Salem, S.M., Antelava, A., Constantinou, A., Manos, G., Dutta, A.: A review on thermal and catalytic pyrolysis of plastic solid waste (PSW). J. Environ. Manage. 197, 177–198 (2017). https://doi.org/10.1016/j.jenvman.2017.03.084

    Article  Google Scholar 

  15. Hussain, Z., Khan, K.M., Basheer, N., Hussain, K.: Co-liquefaction of Makarwal coal and waste polystyrene by microwave-metal interaction pyrolysis in copper coil reactor. J. Anal. Appl. Pyrolysis 90, 53–55 (2011). https://doi.org/10.1016/j.jaap.2010.10.002

    Article  Google Scholar 

  16. Suriapparao, D.V., Vinu, R.: Resource recovery from synthetic polymers via microwave pyrolysis using different susceptors. J. Anal. Appl. Pyrolysis 113, 701–712 (2015). https://doi.org/10.1016/j.jaap.2015.04.021

    Article  Google Scholar 

  17. Wang, W., Xiqiang, Z.: Review on microwave—metal discharges and their applications in energy and industrial processes. Appl. Energy 175, 141–157 (2016). https://doi.org/10.1016/j.apenergy.2016.04.091

    Article  Google Scholar 

  18. Hussain, Z., Khan, K.M., Hussain, K., Perveen, S.: Microwave-metal Interaction pyrolysis of waste polystyrene in a copper coil reactor. Energy Sourc. Part A 36, 1982–1989 (2014). https://doi.org/10.1080/15567036.2011.557692

    Article  Google Scholar 

  19. Lee, K.-H., Shin, D.-H., Seo, Y.-H.: Liquid-phase catalytic degradation of mixtures of waste high-density polyethylene and polystyrene over spent FCC catalyst. Effect of mixing proportions of reactants. Polym. Degrad. Stab. 84, 123–127 (2004). https://doi.org/10.1016/j.polymdegradstab.2003.09.019

    Article  Google Scholar 

  20. Miandad, R., Barakat, M.A., Aburiazaiza, A.S., Rehan, M., Nizami, A.S.: Catalytic pyrolysis of plastic waste: a review. Process Saf. Environ. Prot. 102, 822–838 (2016). https://doi.org/10.1016/j.psep.2016.06.022

    Article  Google Scholar 

  21. Hussain, Z., Khan, K.M., Perveen, S., Hussain, K., Voelter, W.: The conversion of waste polystyrene into useful hydrocarbons by microwave-metal interaction pyrolysis. Fuel Process. Technol. 94, 145–150 (2012). https://doi.org/10.1016/j.fuproc.2011.10.009

    Article  Google Scholar 

  22. Lee, K.-H.: Effects of the types of zeolites on catalytic upgrading of pyrolysis wax oil. J. Anal. Appl. Pyrolysis 94, 209–214 (2012). https://doi.org/10.1016/j.jaap.2011.12.015

    Article  Google Scholar 

  23. Serrano, D.P., Aguado, J., Escola, J.M., Garagorri, E.: Performance of a continuous screw kiln reactor for the thermal and catalytic conversion of polyethylene–lubricating oil base mixtures. Appl. Catal. B Environ. 44, 95–105 (2003). https://doi.org/10.1016/S0926-3373(03)00024-9

    Article  Google Scholar 

  24. Seth, D., Sarkar, A.: Thermal pyrolysis of polypropylene: effect of reflux-condenser on the molecular weight distribution of products. Chem. Eng. Sci. 59, 2433–2445 (2004). https://doi.org/10.1016/j.ces.2004.03.008

    Article  Google Scholar 

  25. Scheirs, J., Kaminsky, W.: Feedstock recycling and pyrolysis of waste plastics. Wiley, New York (2006)

    Book  Google Scholar 

  26. Demirbas, A.: Pyrolysis of municipal plastic wastes for recovery of gasoline-range hydrocarbons. J. Anal. Appl. Pyrolysis 72, 97–102 (2004). https://doi.org/10.1016/j.jaap.2004.03.001

    Article  Google Scholar 

  27. Garforth, A.A., Lin, Y.-H., Sharratt, P.N., Dwyer, J.: Production of hydrocarbons by catalytic degradation of high density polyethylene in a laboratory fluidised-bed reactor. Appl. Catal. A Gen. 169, 331–342 (1998). https://doi.org/10.1016/S0926-860X(98)00022-2

    Article  Google Scholar 

  28. Mastral, F.J., Esperanza, E., Garcı́a, P., Juste, M.: Pyrolysis of high-density polyethylene in a fluidised bed reactor Influence of the temperature and residence time. J. Anal. Appl. Pyrolysis 63, 1–15 (2002). https://doi.org/10.1016/S0165-2370(01)00137-1

    Article  Google Scholar 

  29. Ding, W., Liang, J., Anderson, L.L.: Thermal and catalytic degradation of high density polyethylene and commingled post-consumer plastic waste. Fuel Process. Technol. 51, 47–62 (1997). https://doi.org/10.1016/S0378-3820(96)01080-6

    Article  Google Scholar 

  30. Park, D.W., Hwang, E.Y., Kim, J.R., Choi, J.K., Kim, Y.A., Woo, H.C.: Catalytic degradation of polyethylene over solid acid catalysts. Polym. Degrad. Stab. 65, 193–198 (1999). https://doi.org/10.1016/S0141-3910(99)00004-X

    Article  Google Scholar 

  31. Pinto, F., Costa, P., Gulyurtlu, I., Cabrita, I.: Pyrolysis of plastic wastes. 1. Effect of plastic waste composition on product yield. J. Anal. Appl. Pyrolysis 51, 39–55 (1999). https://doi.org/10.1016/S0165-2370(99)00007-8

    Article  Google Scholar 

  32. Ahmad, I., Khan, M.I., Khan, H., Ishaq, M., Tariq, R., Gul, K., Ahmad, W.: Pyrolysis study of polypropylene and polyethylene into premium oil products. Int. J. Green Energy. 12, 663–671 (2015). https://doi.org/10.1080/15435075.2014.880146

    Article  Google Scholar 

  33. Desai, S.B.: Production and analysis of pyrolysis oil from waste plastic in kolhapur city method. Int. J. Eng. Res. Gen. Sci. 3, 590–595 (2015)

    Google Scholar 

  34. Watanabe, M., Nakata, C., Wu, W., Kawamoto, K., Noma, Y.: Characterization of semi-volatile organic compounds emitted during heating of nitrogen-containing plastics at low temperature. Chemosphere 68, 2063–2072 (2007). https://doi.org/10.1016/j.chemosphere.2007.02.022

    Article  Google Scholar 

  35. Kwon, D., Ko, M.S., Yang, J.S., Kwon, M.J., Lee, S.W., Lee, S.: Identification of refined petroleum products in contaminated soils using an identification index for GC chromatograms. Environ. Sci. Pollut. Res. 22, 12029–12034 (2015). https://doi.org/10.1007/s11356-015-4465-z

    Article  Google Scholar 

  36. Marcilla, A., García-Quesada, J.C., Sánchez, S., Ruiz, R.: Study of the catalytic pyrolysis behaviour of polyethylene–polypropylene mixtures. J. Anal. Appl. Pyrolysis 74, 387–392 (2005). https://doi.org/10.1016/j.jaap.2004.10.005

    Article  Google Scholar 

  37. Lin, Y.-H., Yang, M.-H.: Catalytic reactions of post-consumer polymer waste over fluidised cracking catalysts for producing hydrocarbons. J. Mol. Catal. A Chem. 231, 113–122 (2005). https://doi.org/10.1016/j.molcata.2005.01.003

    Article  Google Scholar 

  38. Bhaskar, T., Kaneko, J., Muto, A., Sakata, Y., Jakab, E., Matsui, T., Uddin, M.A.: Pyrolysis studies of PP/PE/PS/PVC/HIPS-Br plastics mixed with PET and dehalogenation (Br, Cl) of the liquid products. J. Anal. Appl. Pyrolysis 72, 27–33 (2004). https://doi.org/10.1016/j.jaap.2004.01.005

    Article  Google Scholar 

  39. Donaj, P.J., Kaminsky, W., Buzeto, F., Yang, W.: Pyrolysis of polyolefins for increasing the yield of monomers’ recovery. Waste Manag. 32, 840–846 (2012). https://doi.org/10.1016/j.wasman.2011.10.009

    Article  Google Scholar 

  40. Kim, J.-R., Yoon, J.-H., Park, D.-W.: Catalytic recycling of the mixture of polypropylene and polystyrene. Polym. Degrad. Stab. 76, 61–67 (2002). https://doi.org/10.1016/S0141-3910(01)00266-X

    Article  Google Scholar 

  41. Wong, H.-W., Broadbelt, L.J.: Tertiary resource recovery from waste polymers via pyrolysis: neat and binary mixture reactions of polypropylene and polystyrene. Ind. Eng. Chem. Res. 40, 4716–4723 (2001). https://doi.org/10.1021/ie010171s

    Article  Google Scholar 

  42. Faravelli, T., Bozzano, G., Colombo, M., Ranzi, E., Dente, M.: Kinetic modeling of the thermal degradation of polyethylene and polystyrene mixtures. J. Anal. Appl. Pyrolysis 70, 761–777 (2003). https://doi.org/10.1016/S0165-2370(03)00058-5

    Article  Google Scholar 

Download references

Acknowledgement

The work is supported by Yayasan Universiti Teknologi PETRONAS Grant No. 015 3AA- E06.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Y. Naz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arshad, H., Sulaiman, S.A., Hussain, Z. et al. Effect of Input Power and Process Time on Conversion of Pure and Mixed Plastics into Fuels Through Microwave-Metal Interaction Pyrolysis. Waste Biomass Valor 12, 3443–3457 (2021). https://doi.org/10.1007/s12649-020-01225-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01225-9

Keywords

Navigation