Skip to main content

Advertisement

Log in

Improvement of Biomass Fuel Properties for Rice Straw Pellets Using Torrefaction and Mixing with Wood Chips

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Utilization of rice pellets as biomass fuel has many challenges compared with wood pellets, including low heating value, low bulk density, and high ash content, that cause high logistic costs and clinker formation. To solve these problems, this study focused on upgrading the quality of rice straw pellets to improve logistic efficiency by torrefaction and mixing with wood chips. Torrefaction and mixing with wood chips was effective to improve the energy density, the mechanical durability and the contents of fixed carbon, nitrogen, sulfur and ash, leading to the improvement of both logistic efficiency and combustion behavior. The burning test showed that increases in the fixed carbon content and the mechanical durability contributed to stable increases in the temperature inside the furnace during starting up and reduced the amount of ash in the exhaust gas during stable combustion.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee of the Regions: United in delivering the Energy Union and Climate Action—Setting the foundations for a successful clean energy transition. https://ec.europa.eu/transparency/regdoc/rep/1/2019/EN/com-2019-285-F1-en-main-part-1.pdf (2019). Accessed 24 Sept 2019

  2. The Government of Japan: The 5th Strategic Energy Plan 2018. https://www.meti.go.jp/english/press/2018/pdf/0703_002c.pdf (2019). Accessed 24 Sept 2019

  3. Mola-yudego, B., Arevalo, J., Díaz-Yánez, O., Dimitriou, L., Haapala, A., Filho, A.C.F., Selkimäki, M., Valbuena, R.: Wood biomass potentials for energy in Northern Europe: forest of plantations? Biomass Bioenergy 106, 95–103 (2017)

    Article  Google Scholar 

  4. Mack, R., Kuptz, D., Schön, C., Hartmann, H.: Combustion behavior and slagging tendencies of kaolin additivated agricultural pellets and of wood-straw pellet blends in a small-scale boiler. Biomass Bioenergy 125, 50–62 (2019)

    Article  Google Scholar 

  5. Japan Woody Bioenergy Association: Wood Biomass Energy Data Book 2018. https://www.jwba.or.jp/app/download/13159696992/Data+book+2018+%28English+version%29.pdf?t=1523342683 (2018). Accessed 24 July 2020

  6. Japan Woody Bioenergy Association: Price Transition of Wood and Palm Kernel Shell https://www.jwba.or.jp/database/price-transition01/. (2020). Accessed 24 July 2020

  7. Yagi, K., Minami, K.: Effect of organic matter application on methane emission from some Japanese paddy fields. Soil Sci. Plant Nutr. 36, 599–610 (1990)

    Article  Google Scholar 

  8. Ministry of Agriculture, Forestry and Fisheries: Fundamental plan for promotion of biomass utilization (In Japanese). https://www.maff.go.jp/j/shokusan/biomass/attach/pdf/index-4.pdf (2016). Accessed 24 Sept 2019

  9. Ishii, K., Furuichi, T., Fujiyama, A., Watanabe, S.: Logistics cost analysis of rice straw pellets for feasible production capacity and spatial scale in heat utilization systems: a case study in nanporo Town, Hokkaido Japan. Biomass Bioenergy 94, 155–166 (2016)

    Article  Google Scholar 

  10. Werther, J., Saenger, M., Hartge, E.U., Ogada, T., Siagi, Z.: Combustion of agricultural residues. Prog. Energy Combust. Sci. 26, 1–27 (2000)

    Article  Google Scholar 

  11. Acharya, B., Dutta, A., Minaret, J.: Review on comparative study of dry and wet torrefaction. Sustain. Energy Technol. Assess. 12, 26–37 (2015)

    Google Scholar 

  12. Kizuka, R., Ishii, K., Sato, M., Fujiyama, A.: Characteristics of wood pellets mixed with torrefied rice straw as a biomass fuel. Int. J. Energy Environ. Eng. 10, 357–365 (2019)

    Article  Google Scholar 

  13. van der Stelt, M.J.C., Gerhauser, H., Kiel, J.H.A., Ptasinski, K.J.: Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass Bioenergy 35, 3748–3762 (2011)

    Google Scholar 

  14. Acharya, B., Dutta, A.: Characterization of torrefied willow for combustion application. J. Biobased Mater. Bioenergy 7(6), 667–674 (2013)

    Article  Google Scholar 

  15. Zheng, A.Q., Zhao, Z.L., Chang, S., Huang, Z., He, F., Li, H.B.: Effect of torrefaction temperature on product distribution from two-staged pyrolysis of biomass. Energy Fuels 26(5), 2968–2974 (2012)

    Article  Google Scholar 

  16. Zhang, A.Q., Jiang, L.Q., Zhao, Z.L., Huang, Z., Zhao, K., Wei, G.Q., Wang, X.B., He, F., Li, H.B.: Impact of torrefaction on the chemical structure and catalytic fast pyrolysis behavior of hemicellulose, lignin, and cellulose. Energy Fuels 29(12), 8027–8034 (2015)

    Article  Google Scholar 

  17. Chen, D., Gao, A., Ma, Z., Fei, D., Chang, Y., Shen, C.: In-depth study of rice husk torrefaction: characterization of solid, liquid and gaseous products, oxygen migration and energy yield. Biores. Technol. 253, 148–153 (2018)

    Article  Google Scholar 

  18. Koppejan, J., Sokhansanj, S., Melin, S., Madrali, S.: IEA bioenergy task 32 report. Final report, status overview of torrefaction technologies. https://www.ieabcc.nl/publications/IEA_Bioenergy_T32_Torrefaction_review.pdf (2012). Accessed 24 Sept 2019

  19. Bridgeman, T.G., Jones, J.M., Shield, I., Williams, P.T.: Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel 87, 844–856 (2008)

    Article  Google Scholar 

  20. IEA Bioenergy, Task 40: Possible Effects of Torrefaction on Biomass Trade. https://www.ieabioenergy.com/wp-content/uploads/2016/09/Two-page_Summary_Torrefaction-biomass- trade.pdf (2015). Accessed 24 Sept 2019

  21. Cardona, S., Gallego, L.J., Valencia, V., Martínez, E., Rios, L.A.: Torrefaction of eucalyptus-tree residues: a new method for energy and mass balances of the process with the best torrefaction conditions. Sustain. Energy Technol. Assess. 31, 17–24 (2019)

    Google Scholar 

  22. Nanou, P., Carbo, M.C., Kiel, J.H.A.: Detailed mapping of the mass and energy balance of a continuous biomass torrefaction plant. Biomass Bioenergy 89, 67–77 (2016)

    Article  Google Scholar 

  23. Bass, R., Garcia-Perez, M., Horneck, D., Lewis, M., Pan, B., Peters, T., Stevens, B., Wysocki, D.: Carbon implications of converting a coal-fired power plant to combustion of torrefied arundo donax. Appl. Bioenergy 1, 30–43 (2014)

    Article  Google Scholar 

  24. Chen, W.H., Peng, J., Xiaotao, T.B.: A State-of-the-art review of biomass torrefaction, densification and applications. Renew. Sustain. Energy Rev. 44, 847–866 (2015)

    Article  Google Scholar 

  25. Tumuluru, J.S., Hess, R.: New market potential: torrefaction of woody biomass. Materials World Magazine, 2 Jun https://www.iom3.org/materialsworld-magazine/feature/2015/jun/02/new-market-potential-torrefaction-woody-biomass (2015). Accessed 10 Sept 2020

  26. Öhman, M., Boman, C., Hedman, H., Nordin, A., Böstrom, D.: Slagging tendencies of wood pellet ash during combustion in residential pellet burners. Biomass Bioenergy 27, 585–596 (2004)

    Article  Google Scholar 

  27. Ishii, K., Furuichi, T.: Influence of moisture content, particle size and forming temperature on productivity and quality of rice straw pellets. Waste Manage. 34, 2621–2626 (2014)

    Article  Google Scholar 

  28. Feldmeier, S., Wopienka, E., Schwarz, M., Schön, C., Pfeifer, C.: Applicability of fuel indexes for small-scale biomass combustion technologies, part 1: slag formation. Energy Fuels. 33, 10969–10977 (2019)

    Article  Google Scholar 

  29. Japanese Industrial Standards: Coal and Coke−Methods for Proximate Analysis. JIS M 8812. (2004)

  30. Japanese Industrial Standards: Coal and Coke−Mechanical Methods for Ultimate Analysis. JIS M 8819. (1997)

  31. Japanese Industrial Standards: Coal and Coke-Determination of Gross Calorific Value by the Bomb Calorimetric Method, and Calculation of Net Calorific Value. JIS M 8814. (1993)

  32. Japan Wood Pellet Association: Quality Standard for Wood Pellets (in Japanese). (2011)

  33. Chen, W.H., Kuo, P.C.: Torrefaction and co-torrefacction characterization of hemicellulose, cellulose and lignin as well as torrfaction of some basic constituents in biomass. Energy. 36, 803–811 (2011)

    Article  Google Scholar 

  34. Chen, D., Zhou, J., Zhang, Q., Zhu, X., Lu, Q.: Upgrading of rice husk by torrefaction and its influence on the fuel properties. BioResources 9(4), 5893–5905 (2014)

    Google Scholar 

  35. Wannapeera, J., Fungtammasan, B., Worasuwannarak, N.: Effects of temperature and holding time during torrefaction on the pyrolysis behaviors of woody biomass. J. Anal. Appl. Pyrol. 92, 99–105 (2011)

    Article  Google Scholar 

  36. Ma, Z., Zhang, Y., Shen, Y., Wang, J., Yang, Y., Zhang, W., Wang, S.: Oxygen migration characteristics during bamboo torrefaction process based on the properties of torrefied solid, gaseous, and liquid products. Biomass Bioenergy 128, 105300 (2019)

    Article  Google Scholar 

  37. Knudsen, J.N., Jensen, P.A., Lin, W., Frandsen, F.J., Dam-Johansen, K.: Sulfur transformations during thermal conversion of herbaceous biomass. Energy Fuels 18, 810–819 (2004)

    Article  Google Scholar 

  38. Saleh, S.B., Flensborg, J.P., Shoulaifar, T.K., Sárossy, Z., Hansen, B.B., Egsgaard, H., DeMartini, N., Jensen, P.A., Glarborg, P., Dam-Johansen, K.: Release of chlorine and sulfur during biomass torrefaction and pyrolysis. Energy Fuels. 28, 3738–3746 (2014)

    Article  Google Scholar 

  39. Phanphanich, M., Mani, S.: Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Biores. Technol. 102(2), 1246–1253 (2011)

    Article  Google Scholar 

  40. Stelte, W., Nielsen, N.K., Hansen, H.O., Dahl, J., Shang, L., Sanadi, A.R.: Pelletizing properties of torrefied wheat straw. Biomass Bioenergy 49, 214–221 (2013)

    Article  Google Scholar 

  41. Temmerman, M., Rabier, F., Jensen, P.D., Hartmann, H., Böhm, T.: Comparative study of durability test methods for pellets and briquettes. Biomass Bioenergy 3, 964–972 (2006)

    Article  Google Scholar 

  42. Ma, Z., Zhang, Y., Li, C., Yang, Y., Zhang, W., Zhao, C.: N-doping of biomass by ammonia (NH3) torrefaction pretreatment for the production of renewable N-containing chemicals by fast pyrolysis. Biores. Technol. 292, 122034 (2019)

    Article  Google Scholar 

  43. Regueiro, A., Jezerská, L., Pérez-Orozco, R., Patiño, D., Zegzulka, J., Nečas, J.: Viability evaluation of three grass biofuels: experimental study in a small-scale combustor. Energies 12, 1352 (2019)

    Article  Google Scholar 

  44. Demirbas, A.: Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Prog. Energy Combust. Sci. 31, 171–192 (2005)

    Article  Google Scholar 

  45. Jenkins, B.M., Baxter, L., Miles Jr., C., Miles, T.R. : Combustion properties of biomass. Fuel Process. Technol. 54, 17–46 (1998)

    Article  Google Scholar 

  46. Regueiro, A., Jezerská, L., Patiño, D., Pérez-Orozco, R., Nečas, J., Žídek, M.: Experimental study of the viability of low-grade biofuels in small-cale appliances. Sustainability. 9, 1823 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This study was conducted with support from technical research aid, JFE 21st Century Foundation. We are also grateful to Dr. Toshiki Sato of Takeda Tekko-Sho Co., Ltd., for the combustion test.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuei Ishii.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kizuka, R., Ishii, K., Ochiai, S. et al. Improvement of Biomass Fuel Properties for Rice Straw Pellets Using Torrefaction and Mixing with Wood Chips. Waste Biomass Valor 12, 3417–3429 (2021). https://doi.org/10.1007/s12649-020-01234-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01234-8

Keywords

Navigation