Skip to main content
Log in

Waterworks Sludge: An Underrated Material for Beneficial Reuse in Water and Environmental Engineering

  • Review
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Waterworks sludge refers to the inevitable suspended and dissolved solids produced during the water purification process when producing tap water where Al-salt and/or Fe-salt are used as coagulant worldwide. Waterworks sludge is dewatered and the resultant cakes have been treated as “waste” for landfill as their major final disposal solution for a long time in practice. As waterworks sludge is the residual of potable water treatment process, it is not harmful and without toxic elements such as heavy metals in most cases in comparison to sewage sludges for instance. Actually, waterworks sludge is an underrated material with huge potential for beneficial reuse as raw material in water and environmental engineering. However, little was significantly progressed on this topic until the last two decades. Research and development (R&D) with special interest and focus on waterworks sludge reuse was conducted in our group in the last 15 years and this paper reports and discusses the main work and its novel application profile. Overall, it is believed that the R&D of waterworks sludge is useful and will help to develop national strategy of the entire waterworks sludge management, allowing its transformation from a “waste” into value-added products, and thus contribute to sustainable development.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Babatunde, A.O., Zhao, Y.Q.: Constructive approaches towards water treatment works sludge management: an international review of beneficial re-uses. Crit. Rev. Environ. Sci. Technol. 37, 129–164 (2007)

    Google Scholar 

  2. Dassanayake, K.B., Jayasinghe, G.Y., Surapaneni, A., Hetherington, C.: A review on alum sludge reuse with special reference to agricultural applications and future challenges. Waste Manag. 38, 321–335 (2015)

    Google Scholar 

  3. Ahmad, T., Ahmad, K., Alam, M.: Sustainable management of water treatment sludge through 3’R’ concept. J. Clean. Prod. 124, 1–13 (2016)

    Google Scholar 

  4. Shen, C., Zhao, Y.Q., Li, W., Yang, Y., Liu, R., Morgen, D.: Global profile of heavy metals and semimetals adsorption using drinking water treatment residual. Chem. Eng. J. 372, 1019–1027 (2019)

    Google Scholar 

  5. Xu, D., Lee, L.Y., Lim, F.Y., Lyu, Z., Zhu, H., Ong, S.L., Hu, J.: Water treatment residual: a critical review of its applications on pollutant removal from stormwater runoff and future perspectives. J. Environ. Manag. 259, 109649 (2020). https://doi.org/10.1016/j.jenvman.2019.109649

    Article  Google Scholar 

  6. Zhao, Y.Q., Razali, M., Babatunde, A.O., Yang, Y., Bruen, M.: Reuse of aluminium-based water treatment sludge to immobilize a wide range of phosphorus contamination: equilibrium study with different isotherm models. Sep. Sci. Technol. 42(12), 2705–2721 (2007)

    Google Scholar 

  7. Ackah, L., Guru, R., Peiravi, M., Mohanty, M., Ma, X., Kumar, S., Liu, J.: Characterization of southern illinois water treatment residues for sustainable applications. Sustainability 10, 1374 (2018). https://doi.org/10.3390/su10051374

    Article  Google Scholar 

  8. Shakya, A.K., Bhande, R., Ghosh, P.K.: A practical approach on reuse of drinking water treatment plant residuals for fluoride removal. Environ. Technol. 2019(1588383), 1–13 (2019)

    Google Scholar 

  9. Muisa, N., Nhapi, I., Ruziwa, W., Manyuchi, M.M.: Utilization of alum sludge as adsorbent for phosphorus removal in municipal wastewater: a review. J. Water Process Eng. 35, 101187 (2020). https://doi.org/10.1016/j.jwpe.2020.101187

    Article  Google Scholar 

  10. Kumar, R., Kang, C.U., Mohan, D., Khan, M.A., Lee, J.H., Lee, S.S., Jeon, B.H.: Waste sludge derived adsorbents for arsenate removal from water. Chemosphere 239, 124832 (2020)

    Google Scholar 

  11. Chiang, K.-Y., Chou, P.-H., Hua, C.-R., Chien, K.-L., Cheeseman, C.: Light weight bricks manufactured from water treatment sludge and rice husks. J. Hazard. Mater. 171, 76–82 (2009)

    Google Scholar 

  12. Ippolito, J.A., Barbarick, K.A., Elliott, H.A.: Drinking water treatment residuals : a review of recent uses. J. Environ. Qual. 2, 1–12 (2011). https://doi.org/10.2134/jeq2010.0242

    Article  Google Scholar 

  13. Razali, M., Zhao, Y.Q., Bruen, M.: Effectiveness of a drinking water treatment sludge in removing different phosphorus species from aqueous solution. Sep. Purif. Technol. 55, 300–306 (2007)

    Google Scholar 

  14. Sales, A., De Souza, F.R., Almeida, F.R.: Mechanical properties of concrete produced with a composite of water treatment sludge and sawdust. Constr. Build. Mater. 25(6), 2793–2798 (2011)

    Google Scholar 

  15. Sotero-Santos, R.B., Rocha, O., Povinelli, J.: Evaluation of WTS toxicity using the Daphnia bioassay. Water Res. 39(16), 3909–3917 (2005)

    Google Scholar 

  16. Zou, J.L., Xu, G.R., Li, G.B.: Ceramsite obtained from water and wastewater sludge and its characteristics affected by Fe2O3, CaO, and MgO. J. Hazard. Mater. 165, 995–1001 (2009)

    Google Scholar 

  17. Hidalgo, A.M., Murcia, M.D., Gomez, M., Gomez, E., Garcia-Izquierdo, C., Solano, C.: Possible uses for sludge from drinking water treatment plants. J. Environ. Eng. 143(3), 7–16 (2017)

    Google Scholar 

  18. Odimegwu, T.C., Zakaria, I., Abood, M.M., Nketsiah, C.B.K., Ahmad, M.: Review on different beneficial ways of applying alum sludge in a sustainable disposal manner. Civil Eng. J.-Tehran 4(9), 2230–2241 (2018)

    Google Scholar 

  19. Yang, Y., Tomlinson, D., Kennedy, S., Zhao, Y.Q.: Dewatered alum sludge: a potential adsorbent for phosphorus removal. Water Sci. Technol. 54, 207–213 (2006)

    Google Scholar 

  20. Liu, R., Zhao, Y.Q., Sibille, C., Ren, B.: Evaluation of natural organic matter release from alum sludge reuse in wastewater treatment and its role in P adsorption. Chem. Eng. J. 302, 120–127 (2016)

    Google Scholar 

  21. Wang, Y., Ren, B.M., Zhao, Y.Q., English, A., Cannon, M.: A comparison of alum sludge with peat for aqueous glyphosate removal for maximizing their value for practical use. Water Sci. Technol. (2018). https://doi.org/10.2166/wst.2018.165

    Article  Google Scholar 

  22. Yang, Y., Zhao, Y.Q., Babatunde, A.O., Wang, L., Ren, Y.X., Han, Y.: Characteristics and mechanisms of phosphate adsorption on dewatered alum sludge. Sep. Purif. Technol. 51, 193–200 (2006)

    Google Scholar 

  23. Zhao, X.H., Luo, H.L., Tao, T., Zhao, Y.Q.: Immobilization of arsenic in aqueous solution by waterworks alum sludge: prospects in China. Int. J. Environ. Stud. 72(6), 989–1001 (2015)

    Google Scholar 

  24. Shanmugam, S.: Granulation techniques and technologies: recent progresses. Bioimpacts 5, 55–63 (2015)

    Google Scholar 

  25. Li, X.Q., Cui, J., Pei, Y.S.: Granulation of drinking water treatment residuals as applicable media for phosphorus removal. J. Environ. Manag. 213, 36–46 (2018)

    Google Scholar 

  26. Chen, S., Chen, Y., Pei, H., Hou, Q.: Biofilm development dynamics and pollutant removal performance of ceramsite made from drinking-water treatment sludge. Water Environ. Res. 91, 616–627 (2019)

    Google Scholar 

  27. Wang, Y., Yang, J., Xu, H., Liu, C., Shen, Z., Hu, K.: Preparation of ceramsite based on waterworks sludge and its application as matrix in constructed wetlands. Int. J. Environ. Res. Public Health 16, 2637 (2019). https://doi.org/10.3390/ijerph16152637

    Article  Google Scholar 

  28. Xu, G., Zou, J., Li, G.: Ceramsite made with water and wastewater sludge and its characteristics affected by SiO2 and Al2O3. Environ. Sci. Technol. 42, 7417–7423 (2008)

    Google Scholar 

  29. Shen, C., Zhao, Y.Q., Liu, R.: Development of pellet-type adsorbent based on water treatment residual. Desalin. Water Treat. 112, 3–11 (2018). https://doi.org/10.5004/dwt.2018.21997

    Article  Google Scholar 

  30. Shen, C., Zhao, Y.Q., Liu, R., Mao, Y., Morgan, D.: Adsorption of phosphorus with calcium alginate beads containing drinking water treatment residual. Water Sci. Technol. 78, 1980–1989 (2018). https://doi.org/10.2166/wst.2018.473

    Article  Google Scholar 

  31. Li, X., Yu, D., Su, L., Pei, Y.: Facile method to granulate drinking water treatment residues as a potential media for phosphate removal. Colloids Surf. A Physicochem. Eng. Asp. 586, 124198 (2020). https://doi.org/10.1016/j.colsurfa.2019.124198

    Article  Google Scholar 

  32. Gao, J., Guo, H., Zhang, J., Yang, R., Gao, J., Wang, G.: Preparation of sustainable non-combustion filler substrate from waterworks sludge/aluminum slag/gypsum/silica/maifan stone for phosphorus immobilization in constructed wetlands. Water Sci. Technol. 80, 153–163 (2019)

    Google Scholar 

  33. Zhao, Y.Q., Zhao, X.H., Babatunde, A.O.: Use of dewatered alum sludge as main substrate in treatment reed bed receiving agricultural wastewater: long-term trial. Bioresour. Technol. 100, 644–648 (2009)

    Google Scholar 

  34. Zhao, Y.Q., Babatunde, A.O., Hu, Y., Kumar, J.L.G., Zhao, X.H.: A two-prong approach of beneficial reuse of alum sludge in engineered wetland: first experience from Ireland. Waste Biomass Valorization 1, 227–234 (2010)

    Google Scholar 

  35. Hu, Y., Zhao, Y., Zhao, X., Kumar, J.L.G.: High rate nitrogen removal in an alum sludge-based intermittent aeration constructed wetland. Environ. Sci. Technol. 46, 4583–4590 (2012)

    Google Scholar 

  36. Hu, Y., Zhao, Y., Rymszewicz, A.: Robust biological nitrogen removal by creating multiple tides in a single bed tidal flow constructed wetland. Sci. Total Environ. 470, 1197–1204 (2014)

    Google Scholar 

  37. Masi, F., Rizzo, A., Bresciani, R., Martinuzzi, N., Wallace, S.D., Van Oirschot, D., Macor, F., Rossini, T., Fornaroli, R., Mezzanotte, V.: Lessons learnt from a pilot study on residual dye removal by an aerated treatment wetland. Sci. Total. Environ. 648, 144–152 (2019)

    Google Scholar 

  38. Nguyen, X.C., Chang, S.W., Tran, T.C.P., Nguyen, T.T.N., Hoang, T.Q., Banu, J.R., Al-Muhtaseb, A.H., La, D.D., Guo, W., Ngo, H.H., Nguyen, D.D.: Comparative study about the performance of three types of modified natural treatment systems for rice noodle wastewater. Bioresour. Technol. 282, 163–170 (2019)

    Google Scholar 

  39. Zhao, Y.Q., Babatunde, A.O., Hu, Y.S., Kumar, J.L.G., Zhao, X.H.: Pilot field-scale demonstration of a novel alum sludge-based constructed wetland system for enhanced wastewater treatment. Process Biochem. 46(1), 278–283 (2011)

    Google Scholar 

  40. Zhao, Y.Q., Babatunde, A.O., Razali, M., Harty, F.: Use of dewatered alum sludge as a substrate in reed bed treatment systems for wastewater treatment. J. Environ. Sci. Health Part A Toxic/Hazard. Subst. Environ. Eng. 43(1), 105–110 (2008)

    Google Scholar 

  41. Babatunde, A.O., Zhao, Y.Q., Burke, A.M., Morris, M.A., Hanrahan, J.P.: Characterization of aluminium-based water treatment residual for potential phosphorus removal in engineered wetlands. Environ. Pollut. 157(10), 2830–2836 (2009)

    Google Scholar 

  42. Liu, R., Zhao, Y.Q., Zhao, J., Xu, L., Sibille, C.: A fancy eco-compatible wastewater treatment system: green bio-sorption reactor. Biores. Technol. 234, 224–232 (2017)

    Google Scholar 

  43. Liu, R., Zhao, Y.Q., Wang, T., Shen, C.: Long-term operation with an insight into a newly established green biosorption reactor: can it achieve “1+1>2”? Biores. Technol. 255, 96–103 (2018)

    Google Scholar 

  44. Shen, C., Zhao, Y.Q., Liu, R., Morgan, D., Wei, T.: Enhancing wastewater remediation by drinking water treatment residual-augmented floating treatment wetlands. Sci. Total Environ. 673, 230–236 (2019)

    Google Scholar 

  45. Zhao, Y.Q., Collum, S., Phelan, M., Goodbody, T., Doherty, L., Hu, Y.S.: Preliminary investigation of constructed wetland incorporating microbial fuel cell: batch and continuous flow trials. Chem. Eng. J. 229, 364–370 (2013)

    Google Scholar 

  46. Doherty, L., Zhao, Y., Zhao, X., Wang, W.: Nutrient and organics removal from swine slurry with simultaneous electricity generation in an alum sludge-based constructed wetland incorporating microbial fuel cell technology. Chem. Eng. J. 266, 74–81 (2015)

    Google Scholar 

  47. Xu, L., Zhao, Y.Q., Wang, X., Yu, Z.: Applying multiple bio-cathodes in constructed wetland-microbial fuel cell for promoting energy production and bioelectrical derived nitrification-denitrification process. Chem. Eng. J. 344, 105–113 (2018)

    Google Scholar 

  48. Tang, C., Zhao, Y.Q., Kang, C., Yang, Y., Morgan, D., Xu, L.: Towards concurrent pollutants removal and high energy harvesting in a pilot-scale CW-MFC: insight into the cathode conditions and electrodes connection. Chem. Eng. J. 373, 150–160 (2019)

    Google Scholar 

  49. Yang, Y., Zhao, Y.Q., Tang, C., Xu, L., Morgan, D., Liu, R.: Role of macrophyte species in constructed wetland-microbial fuel cell for simultaneous wastewater treatment and bioenergy generation. Chem. Eng. J. 392, 123708 (2020)

    Google Scholar 

  50. Rebosura Jr., M., Salehin, S., Pikaar, I., Kulandaivelu, J., Jiang, G., Keller, J., Sharma, K., Yuan, Z.: Effects of in-sewer dosing of iron-rich drinking water sludge on wastewater collection and treatment systems. Water Res 171, 115396 (2020)

    Google Scholar 

  51. Zhao, Y.Q.: Enhancement of alum sludge dewatering capacity by using gypsum as skeleton builder. Colloids Surf. A Physicochem. Eng. Asp. 211(2–3), 205–212 (2002)

    Google Scholar 

  52. Jangkorn, S., Kuhakaew, S., Theantanoo, S., Klinla-or, H., Sriwiriyarat, T.: Evaluation of reusing alum sludge for the coagulation of industrial wastewater containing mixed anionic surfactants. J. Environ. Sci. (China) 23(4), 587–594 (2011)

    Google Scholar 

  53. Nair, A.T., Ahammed, M.M.: Water treatment sludge for phosphate removal from the effluent of UASB reactor treating municipal wastewater. Process Saf. Environ. Prot. 94, 105–112 (2015)

    Google Scholar 

  54. Xu, Y., Chen, T., Xu, R., He, L., Cui, F.: Impact of recycling alum sludge on coagulation of low-turbidity source waters. Desalin. Water Treat. 57(15), 6732–6739 (2015)

    Google Scholar 

  55. Hu, Y.S., Zhao, Y.Q., Sorohan, B.: Removal of glyphosate from aqueous environment by adsorption using water industrial residual. Desalination 271(1–3), 150–156 (2011)

    Google Scholar 

  56. Mazari, L., Abdessemed, D., Szymczyk, A., Trari, M.: Assessment of coagulation-ultrafiltration performance for the treatment of primary wastewater using alum sludge. Water Environ. J. 32(4), 621–629 (2018)

    Google Scholar 

  57. Shrestha, S., Kulandaivelu, J., Sharma, K., Jiang, G., Yuan, Z.: Effects of dosing iron- and alum-containing waterworks sludge on sulfide and phosphate removal in a pilot sewer. Chem. Eng. J. 387, 124073 (2020). https://doi.org/10.1016/j.cej.2020.124073

    Article  Google Scholar 

  58. Kang, C.: Reuse of aluminum-based water treatment sludge as coagulant for animal farm wastewater treatment, MEngSc thesis. University College Dublin, Dublin (2017)

    Google Scholar 

  59. Lai, J.Y., Liu, J.C.: Co-conditioning and dewatering of alum sludge and waste activated sludge. Water Sci. Technol. 50(9), 41–48 (2004)

    Google Scholar 

  60. Yang, Y., Zhao, Y.Q., Babatunde, A.O., Kearney, P.: Co-conditioning of the anaerobic digested sludge of a municipal wastewater treatment plant with alum sludge: benefit of phosphorus reduction in reject water. Water Environ. Res. 79(13), 2468–2476 (2007)

    Google Scholar 

  61. Ren, B., Lyczko, N., Zhao, Y., Nzihou, A.: Integrating alum sludge with waste-activated sludge in co-conditioning and dewatering: a case study of a city in south France. Environ. Sci. Pollut. Res. 27, 14863–14871 (2020). https://doi.org/10.1007/s11356-020-08056-0

    Article  Google Scholar 

  62. Taylor, M., Elliott, H.A.: Influence of water treatment residuals on dewaterability of wastewater biosolids. Water Sci. Technol. 67(1), 180–186 (2012)

    Google Scholar 

  63. Bamdad, H., Hawboldt, K., MacQuarrie, S.: A review on common adsorbents for acid gases removal: focus on biochar. Renew. Sustain. Energy Rev. 81, 1705–1720 (2018)

    Google Scholar 

  64. Wu, H., Zhu, Y., Bian, S., Ko, J.H., Li, S.F.Y., Xu, Q.: H2S adsorption by municipal solid waste incineration (MSWI) fly ash with heavy metals immobilization. Chemosphere 195, 40–47 (2018)

    Google Scholar 

  65. Ren, B., Lyczko, N., Zhao, Y.Q., Nzihou, A.: Alum sludge as an efficient sorbent for hydrogen sulfide removal: experimental, mechanisms and modeling studies. Chemosphere 248, 126010 (2020). https://doi.org/10.1016/j.chemosphere.2020.126010

    Article  Google Scholar 

  66. Ren, B., Zhao, Y.Q., Lyczko, N., Nzihou, A.: Current status and outlook of odor removal technologies in wastewater treatment plant. Waste Biomass Valorization 10(6), 1443–1458 (2019)

    Google Scholar 

  67. Singh, A., Pandey, V., Bagai, R., Kumar, M., Christopher, J., Kapur, G.S.: ZnO-decorated MWCNTs as solvent free nano-scrubber for efficient H2S removal. Mater. Lett. 234, 172–174 (2019)

    Google Scholar 

  68. Sánchez-González, E., Mileo, P.G.M., Sagastuy-Breña, M., Álvarez, J.R., Reynolds, J.E., Villarreal, A., Gutiérrez-Alejandre, A., Ramírez, J., Balmaseda, J., González-Zamora, E., Maurin, G., Humphrey, S.M., Ibarra, I.A.: Highly reversible sorption of H2S and CO2 by an environmentally friendly Mg-based MOF. J. Mater. Chem. A 6(35), 16900–16909 (2018)

    Google Scholar 

  69. Hervy, M., Pham Minh, D., Gérente, C., Weiss-Hortala, E., Nzihou, A., Villot, A., Le Coq, L.: H2S removal from syngas using wastes pyrolysis chars. Chem. Eng. J. 334, 2179–2189 (2018)

    Google Scholar 

  70. Sharma, S., Verma, A.S.: A theoretical study of H2S adsorption on graphene doped with B, Al and Ga. Phys. B 427, 12–16 (2013)

    Google Scholar 

  71. Sitthikhankaew, R., Chadwick, D., Assabumrungrat, S., Laosiripojana, N.: Effects of humidity, O2, and CO2 on H2S adsorption onto upgraded and KOH impregnated activated carbons. Fuel Process. Technol. 124, 249–257 (2014)

    Google Scholar 

  72. Wang, J., Wang, L., Fan, H., Wang, H., Hu, Y., Wang, Z.: Highly porous copper oxide sorbent for H2S capture at ambient temperature. Fuel 209, 329–338 (2017)

    Google Scholar 

  73. Zhao, Y.Q., Liu, R., Awe, W., Yang, Y., Shen, C.: Acceptability of land application of alum-based water treatment residuals—an explicit and comprehensive review. Chem. Eng. J. 353, 717–726 (2018)

    Google Scholar 

  74. Turner, T., Wheeler, R., Stone, A., Oliver, I.: Potential alternative reuse pathways for water treatment residuals: remaining barriers and questions—a review. Water Air Soil Pollut. 230, 227 (2019). https://doi.org/10.1007/s11270-019-4272-0

    Article  Google Scholar 

  75. Zhao, Y.Q., Ren, B., O’Brien, A., O’Toole, S.: Using alum sludge for clay brick: an Irish investigation. Int. J. Environ. Stud. 73(5), 719–730 (2016)

    Google Scholar 

Download references

Acknowledgements

The following people are acknowledged as group members for their work on different kinds of projects towards the R&D of beneficial reuse of WTS: Dr Yongzhe Yang, Dr Akintunde Babatunde, Dr Lordwin Kumar, Dr Maha Tony, Dr Xiaohong Zhao, Dr Yuansheng Hu, Dr Liam Doherty, Dr Ranbin Liu, Dr Lei Xu, Dr Yan Yang, Dr Wesley Awe, Ms Tongyue Wang, Mr Cheng Tang, and Miss Yi Mao.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaqian Zhao or Ange Nzihou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Nzihou, A., Ren, B. et al. Waterworks Sludge: An Underrated Material for Beneficial Reuse in Water and Environmental Engineering. Waste Biomass Valor 12, 4239–4251 (2021). https://doi.org/10.1007/s12649-020-01232-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01232-w

Keywords

Navigation