Skip to main content
Log in

Concerted regulation on vertical orientation and film quality of two-dimensional ruddlesden-popper perovskite layer for efficient solar cells

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Recently, the two-dimensional (2D) ruddlesden-popper (RPP) perovskite has been successfully attracting great attention owing to their excellent electronic property and superior ambient stability. But 2D perovskite solar cells (PVSCs) with insulating large cations show a worse performance than three-dimensional (3D) PVSCs in general because of the worse charge transportation. In this work, dimethyl sulfoxide (DMSO) and KI were incorporated simultaneously to produce a synergistic effect on both film quality and orientation of 2D perovskite. With this strategy, a cavity-free 2D perovskite film was formed with vertically oriented crystal, and high quality film was obtained with decreased defects and increased crystallinity. Besides, profitable multiple phases were obtained for better spontaneous carrier separation and transportation. The 2D PVSCs based on (PEA)2(MA)n−1PbnI3n+1 (n=5) delivered a higher power conversion efficiency (PCE) of 13.4%. In addition, the perovskite with KI and DMSO contained more stable low-dimension phase at the bottom of perovskite film, which could act as a barrier to prevent moisture from further eroding internal perovskites. The optimized 2D PVSCs remained 90% of the PCE after being exposed in air (50%–60% humidity, room temperature) with a continuous illumination for 300 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. NREL, https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200803.pdf

  2. Fu Q, Tang X, Huang B, Hu T, Tan L, Chen L, Chen Y. Adv Sci, 2018, 5: 1700387

    Article  CAS  Google Scholar 

  3. Quan LN, Yuan M, Comin R, Voznyy O, Beauregard EM, Hoogland S, Buin A, Kirmani AR, Zhao K, Amassian A, Kim DH, Sargent EH. J Am Chem Soc, 2016, 138: 2649–2655

    Article  CAS  PubMed  Google Scholar 

  4. Huang Z, Hu X, Liu C, Meng X, Huang Z, Yang J, Duan X, Long J, Zhao Z, Tan L, Song Y, Chen Y. Adv Funct Mater, 2019, 29: 1902629

    Article  CAS  Google Scholar 

  5. Smith IC, Hoke ET, Solis-Ibarra D, McGehee MD, Karunadasa HI. Angew Chem Int Ed, 2014, 53: 11232–11235

    Article  CAS  Google Scholar 

  6. Chen S, Shi G. Adv Mater, 2017, 29: 1605448

    Article  CAS  Google Scholar 

  7. Yuan J, Jiang Y, He T, Shi G, Fan Z, Yuan M. Sci China Chem, 2019, 62: 629–636

    Article  CAS  Google Scholar 

  8. Zhang Y, Chen J, Lian X, Yang W, Li J, Tian S, Wu G, Chen H. Sci China Chem, 2019, 62: 859–865

    Article  CAS  Google Scholar 

  9. Dou L, Wong AB, Yu Y, Lai M, Kornienko N, Eaton SW, Fu A, Bischak CG, Ma J, Ding T, Ginsberg NS, Wang LW, Alivisatos AP, Yang P. Science, 2015, 349: 1518–1521

    Article  CAS  PubMed  Google Scholar 

  10. Liu Y, Xiao H, Goddard III WA. Nano Lett, 2016, 16: 3335–3340

    Article  CAS  PubMed  Google Scholar 

  11. Wang N, Cheng L, Ge R, Zhang S, Miao Y, Zou W, Yi C, Sun Y, Cao Y, Yang R, Wei Y, Guo Q, Ke Y, Yu M, Jin Y, Liu Y, Ding Q, di D, Yang L, Xing G, Tian H, Jin C, Gao F, Friend RH, Wang J, Huang W. Nat Photon, 2016, 10: 699–704

    Article  CAS  Google Scholar 

  12. Saidaminov MI, Mohammed OF, Bakr OM. ACS Energy Lett, 2017, 2: 889–896

    Article  CAS  Google Scholar 

  13. Liu J, Leng J, Wu K, Zhang J, Jin S. J Am Chem Soc, 2017, 139: 1432–1435

    Article  CAS  PubMed  Google Scholar 

  14. Jeon NJ, Noh JH, Yang WS, Kim YC, Ryu S, Seo J, Seok SI. Nature, 2015, 517: 476–480

    Article  CAS  PubMed  Google Scholar 

  15. Cao DH, Stoumpos CC, Yokoyama T, Logsdon JL, Song TB, Farha OK, Wasielewski MR, Hupp JT, Kanatzidis MG. ACS Energy Lett, 2017, 2: 982–990

    Article  CAS  Google Scholar 

  16. Lee JW, Dai Z, Han TH, Choi C, Chang SY, Lee SJ, De Marco N, Zhao H, Sun P, Huang Y, Yang Y. Nat Commun, 2018, 9: 3021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Boix PP, Agarwala S, Koh TM, Mathews N, Mhaisalkar SG. J Phys Chem Lett, 2015, 6: 898–907

    Article  CAS  PubMed  Google Scholar 

  18. Hong X, Ishihara T, Nurmikko AV. Solid State Commun, 1992, 84: 657–661

    Article  CAS  Google Scholar 

  19. Xiao Z, Kerner RA, Zhao L, Tran NL, Lee KM, Koh TW, Scholes GD, Rand BP. Nat Photon, 2017, 11: 108–115

    Article  CAS  Google Scholar 

  20. Tsai H, Asadpour R, Blancon JC, Stoumpos CC, Even J, Ajayan PM, Kanatzidis MG, Alam MA, Mohite AD, Nie W. Nat Commun, 2018, 9: 2130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Koh TM, Shanmugam V, Schlipf J, Oesinghaus L, Müller-Buschbaum P, Ramakrishnan N, Swamy V, Mathews N, Boix PP, Mhaisalkar SG. Adv Mater, 2016, 28: 3653–3661

    Article  CAS  PubMed  Google Scholar 

  22. Zhou Y, Wang F, Cao Y, Wang JP, Fang HH, Loi MA, Zhao N, Wong CP. Adv Energy Mater, 2017, 7: 1701048

    Article  CAS  Google Scholar 

  23. Bai Y, Xiao S, Hu C, Zhang T, Meng X, Lin H, Yang Y, Yang S. Adv Energy Mater, 2017, 7: 1701038

    Article  CAS  Google Scholar 

  24. Li N, Zhu Z, Chueh CC, Liu H, Peng B, Petrone A, Li X, Wang L, Jen AKY. Adv Energy Mater, 2017, 7: 1601307

    Article  CAS  Google Scholar 

  25. Hu H, Salim T, Chen B, Lam YM. Sci Rep, 2016, 6: 33546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Milot RL, Sutton RJ, Eperon GE, Haghighirad AA, Martinez Hardigree J, Miranda L, Snaith HJ, Johnston MB, Herz LM. Nano Lett, 2016, 16: 7001–7007

    Article  CAS  PubMed  Google Scholar 

  27. Chen Y, Sun Y, Peng J, Zhang W, Su X, Zheng K, Pullerits T, Liang Z. Adv Energy Mater, 2017, 7: 1700162

    Article  CAS  Google Scholar 

  28. Stoumpos CC, Soe CMM, Tsai H, Nie W, Blancon JC, Cao DH, Liu F, Traoré B, Katan C, Even J, Mohite AD, Kanatzidis MG. Chem, 2017, 2: 427–440

    Article  CAS  Google Scholar 

  29. Zhang X, Wu G, Yang S, Fu W, Zhang Z, Chen C, Liu W, Yan J, Yang W, Chen H. Small, 2017, 13: 1700611

    Article  CAS  Google Scholar 

  30. Qing J, Liu XK, Li M, Liu F, Yuan Z, Tiukalova E, Yan Z, Duchamp M, Chen S, Wang Y, Bai S, Liu JM, Snaith HJ, Lee CS, Sum TC, Gao F. Adv Energy Mater, 2018, 8: 1800185

    Article  CAS  Google Scholar 

  31. Zhang X, Wu G, Fu W, Qin M, Yang W, Yan J, Zhang Z, Lu X, Chen H. Adv Energy Mater, 2018, 8: 1702498

    Article  CAS  Google Scholar 

  32. Liao Y, Liu H, Zhou W, Yang D, Shang Y, Shi Z, Li B, Jiang X, Zhang L, Quan LN, Quintero-Bermudez R, Sutherland BR, Mi Q, Sargent EH, Ning Z. J Am Chem Soc, 2017, 139: 6693–6699

    Article  CAS  PubMed  Google Scholar 

  33. Zhang X, Ren X, Liu B, Munir R, Zhu X, Yang D, Li J, Liu Y, Smilgies DM, Li R, Yang Z, Niu T, Wang X, Amassian A, Zhao K, Liu SF. Energy Environ Sci, 2017, 10: 2095–2102

    Article  CAS  Google Scholar 

  34. Soe CMM, Nie W, Stoumpos CC, Tsai H, Blancon JC, Liu F, Even J, Marks TJ, Mohite AD, Kanatzidis MG. Adv Energy Mater, 2018, 8: 1700979

    Article  CAS  Google Scholar 

  35. Chen B, Rudd PN, Yang S, Yuan Y, Huang J. Chem Soc Rev, 2019, 48: 3842–3867

    Article  CAS  PubMed  Google Scholar 

  36. Boopathi KM, Mohan R, Huang TY, Budiawan W, Lin MY, Lee CH, Ho KC, Chu CW. J Mater Chem A, 2016, 4: 1591–1597

    Article  CAS  Google Scholar 

  37. Abdi-Jalebi M, Andaji-Garmaroudi Z, Cacovich S, Stavrakas C, Philippe B, Richter JM, Alsari M, Booker EP, Hutter EM, Pearson AJ, Lilliu S, Savenije TJ, Rensmo H, Divitini G, Ducati C, Friend RH, Stranks SD. Nature, 2018, 555: 497–501

    Article  CAS  PubMed  Google Scholar 

  38. Zhao W, Yao Z, Yu F, Yang D, Liu SF. Adv Sci, 2018, 5: 1700131

    Article  CAS  Google Scholar 

  39. Liu M, Johnston MB, Snaith HJ. Nature, 2013, 501: 395–398

    Article  CAS  PubMed  Google Scholar 

  40. Chirilä A, Reinhard P, Pianezzi F, Bloesch P, Uhl AR, Fella C, Kranz L, Keller D, Gretener C, Hagendorfer H, Jaeger D, Erni R, Nishiwaki S, Buecheler S, Tiwari AN. Nat Mater, 2013, 12: 1107–1111

    Article  PubMed  CAS  Google Scholar 

  41. Capasso A, Matteocci F, Najafi L, Prato M, Buha J, Cinä L, Pellegrini V, Carlo AD, Bonaccorso F. Adv Energy Mater, 2016, 6: 1600920

    Article  CAS  Google Scholar 

  42. Tsai H, Nie W, Blancon JC, Stoumpos CC, Asadpour R, Harutyunyan B, Neukirch AJ, Verduzco R, Crochet JJ, Tretiak S, Pedesseau L, Even J, Alam MA, Gupta G, Lou J, Ajayan PM, Bedzyk MJ, Kanatzidis MG, Mohite AD. Nature, 2016, 536: 312–316

    Article  CAS  PubMed  Google Scholar 

  43. Wei Y, Chu H, Tian Y, Chen B, Wu K, Wang J, Yang X, Cai B, Zhang Y, Zhao J. Adv Energy Mater, 2019, 9: 1900612

    Article  CAS  Google Scholar 

  44. Cao DH, Stoumpos CC, Farha OK, Hupp JT, Kanatzidis MG. J Am Chem Soc, 2015, 137: 7843–7850

    Article  CAS  PubMed  Google Scholar 

  45. Zheng X, Zhang H, Yang Q, Xiong C, Li W, Yan Y, Gurney RS, Wang T. Carbon, 2019, 142: 156–163

    Article  CAS  Google Scholar 

  46. Groves C, Greenham NC. Phys Rev B, 2008, 78: 155205

    Article  CAS  Google Scholar 

  47. Hu T, Lv X, Cheng X, Huang L, Zhang L, Zhou W, Jiang P, Hu L, Zhou Y, Chen L. J Power Sources, 2019, 409: 66–75

    Article  CAS  Google Scholar 

  48. Hu T, Becker T, Pourdavoud N, Zhao J, Brinkmann KO, Heiderhoff R, Gahlmann T, Huang Z, Olthof S, Meerholz K, Többens D, Cheng B, Chen Y, Riedl T. Adv Mater, 2017, 29: 1606656

    Article  CAS  Google Scholar 

  49. Luo T, Zhang Y, Xu Z, Niu T, Wen J, Lu J, Jin S, (Frank) Liu S, Zhao K. Adv Mater, 2019, 31: 1903848

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51803085, 51963016, U1801256, 51833004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ting Hu or Yiwang Chen.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

11426_2020_9812_MOESM1_ESM.pdf

Concerted Regulation on Vertical Orientation and Film Quality of Two-Dimensional Ruddlesden-Popper Perovskite Film for Efficient Solar Cells

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, X., Wang, X., Hu, T. et al. Concerted regulation on vertical orientation and film quality of two-dimensional ruddlesden-popper perovskite layer for efficient solar cells. Sci. China Chem. 63, 1675–1683 (2020). https://doi.org/10.1007/s11426-020-9812-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9812-6

Navigation