Skip to main content
Log in

Modeling of the Plasma Waveguide on the Basis of the Pulse-Periodic High-Pressure Cesium Discharge

  • APPLIED PHYSICS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Modeling of the pulse-periodic high-pressure cesium discharge on the basis of the radiative gas dynamic equations is executed. Calculation results of radial profiles of the plasma temperature, energy losses on radiation, electron densities and radial velocity of motion are given to various instants from the beginning of a current pulse. It is shown that the discharge under study makes it possible to create almost completely ionized plasma in the hot near-axis area. In this area, electron density increases from the axis to the wall of the tube and the radial profile of concentration has a shape close to parabolic. The time of existence of a plasma waveguide is equal to tens of microseconds, its radius is about a millimeter and the electron density on its axis is about 1017–1018 cm–3. Also, mechanisms of a plasma waveguide formation in the discharge are discussed in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. V. V. Loginov, Prikl. Fiz., No. 4, 24 (2019).

  2. M. Rakić and G. Pichler, J. Quant. Spectrosc. Radiat. Transfer 151, 169 (2015).

    Article  ADS  Google Scholar 

  3. S. V. Gavrish, Prikl. Fiz., No. 3, 67 (2011).

  4. F. G. Baksht and V. F. Lapshin, J. Phys. D: Appl. Phys. 41, 205201 (2008).

  5. M. Rakić and G. Pichler, Opt. Commun. 284, 2881 (2011).

    Article  ADS  Google Scholar 

  6. S. V. Gavrish, V. B. Kaplan, A. M. Martsinovskii, and I. I. Stolyarov, Tech. Phys. Lett. 41, 620 (2015).

    Article  Google Scholar 

  7. F. G. Baksht and V. F. Lapshin, Usp. Prikl. Fiz. 5, 525 (2017).

    Google Scholar 

  8. S. V. Kuznetsov, Plasma Phys. Rep. 40, 611 (2011).

    Article  ADS  Google Scholar 

  9. T. Kameshima, H. Kotaki, M. Kando, I. Daito, K. Kawase, Y. Fukuda, L. M. Chen, T. Homma, S. Kondo, T. Zh. Esirkepov, N. A. Bobrova, P. V. Sasorov, and S. V. Bulanov, Phys. Plasmas 16, 093101 (2009).

  10. F. G. Baksht and V. F. Lapshin, Tech. Phys. 47, 894 (2002).

    Article  Google Scholar 

  11. A. L. Khomkin and A. S. Schumikhin, High Temp. 51, 594 (2013).

    Article  Google Scholar 

  12. V. P. Silin, Introduction to the Kinetic Theory of Gases (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  13. Yu. S. Protasov and S. N. Chuvashev, in Encyclopedia of Low-Temperature Plasma, Ed. by V. E. Fortov: Introductional Volume (Nauka/Interperiodika, Moscow, 2000) [in Russian].

  14. F. G. Baksht and V. F. Lapshin, Usp. Prikl. Fiz. 1, 183 (2013).

    Google Scholar 

  15. Yu. S. Lelikov, N. I. Bochkareva, R. I. Gorbunov, I. A. Martynov, Y. T. Rebane, D. V. Tarkin, and Yu. G. Shreter, Semiconductors 42, 1342 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. G. Baksht or V. F. Lapshin.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baksht, F.G., Lapshin, V.F. Modeling of the Plasma Waveguide on the Basis of the Pulse-Periodic High-Pressure Cesium Discharge. Plasma Phys. Rep. 46, 846–849 (2020). https://doi.org/10.1134/S1063780X20080024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X20080024

Keywords:

Navigation