Skip to main content
Log in

Non-equilibrium Kinetics of Dissociation of Molecular Hydrogen in Microwave Discharge in Liquid Hydrocarbons

  • LOW-TEMPERATURE PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A semi-empirical level-based model is developed that describes the detailed kinetics of the formation and decay of hydrogen atoms during relaxation of the vibrational energy of hydrogen molecules in the gas phase of a microwave discharge in liquid hydrocarbons in the range of the translational temperature from 600 to 3000 K at atmospheric pressure. It is shown that, depending on the conditions in the gas phase, the monomolecular decomposition of hydrogen can consist of two stages—the early and late stages. At the early stage, the dissociation of a hydrogen molecule occurs with a non-equilibrium energy distribution over the internal degrees of freedom of the molecule. At the late stage, chemical equilibrium in the concentration of hydrogen atoms is established. The specific energy stored in the vibrational degree of freedom of the hydrogen molecule decreases as a result of the dissociation of molecules during the equilibrium between the translational-rotational and vibrational degrees of freedom of the molecule. As a result, the relaxation time of the vibrational energy increases and becomes equal to the time at which the equilibrium of hydrogen atoms concentration is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Yu. A. Lebedev, Plasma Phys. Rep. 43, 685 (2017).

    Article  ADS  Google Scholar 

  2. Yu. A. Lebedev, High Temp. 56, 811 (2018).

    Article  Google Scholar 

  3. Yu. A. Lebedev and K. A. Averin, J. Phys. D: Appl. Phys. 51, 214005 (2018).

  4. Yu. A. Lebedev, K. A. Averin, R. S. Borisov, A. R. Garifullin, E S. Bobkova, and T. S. Kurkin, High Energy Chem. 52, 324 (2018).

    Article  Google Scholar 

  5. Yu. A. Lebedev, A. N. Shchegolikhin, and M. Yu. Yablokov, Plasma Processes Polym. 14, 1600227 (2017).

  6. K. A. Averin, V. B. Igor, Yu. A. Lebedev, V. A. Shakhatov, and I. L. Epstein, Plasma Processes Polym. 16, 1800198 (2019).

  7. Yu. A. Lebedev, A. V. Tatarinov, I. L. Epstein, and K. A. Averin, Plasma Chem. Plasma Process. 36, 535 (2016).

    Article  Google Scholar 

  8. Yu. A. Lebedev, A. V. Tatarinov, I. L. Epstein, and I. V. Bilera, J. Phys. D: Appl. Phys. 51, 214007 (2018).

  9. Yu. A. Lebedev and V. A. Shakhatov, Eur. Phys. J. D 73, 167 (2019).

    Article  ADS  Google Scholar 

  10. S. Nomura, H. Toyota, M. Tawara, H. Yamashota, and K. Matsumoto, Appl. Phys. Lett. 88, 231502 (2006).

  11. A. V. Shakhatov and Yu. A. Lebedev, J. Phys. D: Appl. Phys. 51, 213001 (2018).

  12. A. V. Shakhatov and Yu. A. Lebedev, High Energy Chem. 42, 170 (2008).

    Article  Google Scholar 

  13. A. V. Shakhatov, Yu. A. Lebedev, A. Lacoste, and S. Bechu, High Temp. 54, 467 (2016).

    Article  Google Scholar 

  14. A. V. Shakhatov, Yu. A. Lebedev, A. Lacoste, and S. Bechu, High Temp. 53, 569 (2015).

    Article  Google Scholar 

  15. Handbook of Physicohemical Processes in Gas Dynamics, Ed. by G. G. Chernyi and S. A. Losev (Nauchn. Izd. Tsentr Mekh., Moscow, 2002), Vol. 2 [in Russian].

    Google Scholar 

  16. Nonequillibrium Physicochemical Processes in Gas Flows and New Principles of Combustion Organization, Ed. by A. M. Starik (Torus Press, Moscow, 2011) [in Russian].

    Google Scholar 

  17. D. I. Slovetskii, Mechanisms of Chemical Reactions in Nonequilibrium Plasmas (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  18. V. N. Kondrat’ev and E. E. Nikitin, Gas-Phase Reactions: Kinetics and Mechanism (Nauka, Moscow, 1974; Springer-Verlag, Berlin, 1981).

  19. B. F. Gordiets, A. I. Osipov, and L. A. Shelepin, Kinetic Processes in Gases and Molecular Lasers (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  20. N. M. Kuznetsov, Kinetics of Monomolecular Reactions (Nauka, Noscow, 1982) [in Russian].

  21. Handbook of Physiochemical Processes in Gas Dynamics, Vol. 1: Dynamics of Physiochemical Processes in Gases and Plasmas, Ed. by G. G. Chernyi and S. A. Losev (Mosk. Gos. Univ., Moscow, 1995) [in Russian].

    Google Scholar 

  22. Nonequilibrium Oscillatory Kinetics, Ed. by M. Capitelli (Springer-Verlag, New York, 1986).

    Google Scholar 

  23. P. A. Sergeev and D. I. Slovetskii, in III All-Union Symposium on Plasma Chemistry, Zvenigorod, 1979, Book of Abstracts, Vol. 2, p. 132 (Nauka, Moscow, 1979) [in Russian].

  24. V. N. Kondrat’yev, Rate Constants for the Gas-Phase Reactions (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  25. NIST Chemical Kinetics Database. Standard Reference Database 17, Version 7.0 (Web Version), Release 1.6.8, Data Version 2015.09. https://kinetics.nist.gov/kinetics/index.jsp. Cited May 20, 2020.

  26. The RRATE database on Chemical Kinetics. The AVOGADRO Center, Institute of Mechanics, Moscow State University, 1992.

  27. Thermodynamic Properties of Individual Materials, Ed. by V. P. Glushko, L. V. Gurvich, G. A. Bergman, et al. (Nauka, Moscow, 1978–1982; Hemisphere, New York, 1989–1994), Vols. 1−4.

  28. Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991; CRC, Boca Raton, 1997).

  29. M. M. Audibert, R. Vilaseca, J. Lukasik, and J. Ducuing, Chem. Phys. Lett. 37, 408 (1976).

    Article  ADS  Google Scholar 

  30. J. L. Dove and H. Teitelbaum, Chem. Phys. 6, 431 (1974).

    Article  Google Scholar 

  31. A. V. Dem’yanov, Author’s abstract of Candidate’s Dissertation in Physics and Mathematics (Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 1980).

  32. J. H. Kiefer and R. W. Lutz, J. Chem. Phys. 44, 668 (1966).

    Article  ADS  Google Scholar 

  33. G. D. Billing, Chem. Phys. 20, 35 (1977).

    Article  Google Scholar 

  34. M. Cacciatore, M. Capitelli, and G. D. Billing, Chem. Phys. Lett. 157, 305 (1989).

    Article  ADS  Google Scholar 

  35. M. Capitelli, C. M. Ferreira, B. F. Gordiets, and A. I. Osipov, Plasma Kinetics in Atmospheric Gases (Springer-Verlag, Berlin, 2000).

    Book  Google Scholar 

  36. M. M. Audibert, C. Joffrin, and J. Ducuing, Chem. Phys. Lett. 25, 158 (1974).

    Article  ADS  Google Scholar 

  37. F. De Martini and J. Ducuing, Phys. Rev. Lett. 17, 117 (1966).

    Article  ADS  Google Scholar 

  38. J. Ducuing, C. Joffrin, and J. P. Coffinet, Opt. Commun. 2, 245 (1970).

    Article  ADS  Google Scholar 

  39. A. A. Matveyev and V. P. Silakov, Plasma Sources Sci. Technol. 4, 606 (1995).

    Article  ADS  Google Scholar 

  40. G. D. Billing and V. V. Fisher, Chem. Phys. 18, 225 (1976).

    Article  Google Scholar 

  41. E. Garcia and A. Lagana, Chem. Phys. Lett. 123, 365 (1986).

    Article  ADS  Google Scholar 

  42. C. Gorse, M. Capitelli, M. Bacal, J. Bretagne, and A. Lagana, Chem. Phys. 117, 177 (1987).

    Article  Google Scholar 

  43. R. K. Janev, D. Reiter, and U. Samm, in Encyclopedia of Low-Temperature Plasma, Ed. by V. E. Fortov, Ser. B, Vol. V-1: Diagnostics of Low-Temperature Plasma, Ed. by V. N. Kolesnikov (Yanus-K, Moscow, 2007), p. 110 [in Russian].

  44. G. Herzberg, Molecular Spectra and Molecular Structure, (Van Nostrand, New York, 1939).

    Google Scholar 

  45. M. A. El’yashevich, Atomic and Molecular Spectroscopy (Editorial URSS, Moscow, 2001).

    Google Scholar 

  46. A. A. Radtsig, in Plasma Chemistry, Ed. by B. M. Smirnov (Atomizdat, Moscow, 1975), Vol. 2, p. 3 [in Russian].

    Google Scholar 

  47. A. A. Radtsig and B. M. Smirnov, Reference Data on Atoms, Molecules, and Ions (Atomizdat, Moscow, 1980; Springer-Verlag, Berlin, 1985).

  48. K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure, Vol. IV: Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979).

  49. V. N. Ochkin, Spectroscopy of Low-Temperature Plasma (Fizmatlit, Moscow, 2006; Willey-VCH, Weinheim, 2009).

  50. L. S. Polak, M. Ya. Gol’denberg, and A. A. Levitskii, Computational Methods in Chemical Kinetics (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  51. A. E. Mudrov, Numerical methods for PCs: Basic, Fortran and Pascal (Izd-vo Rasko, Tomsk, 1991) [in Russian].

    Google Scholar 

  52. B. P. Demidovich, I. A. Maron, and E. Z. Shuvalova, Numerical Analysis Methods (Nauka, Moscow, 1967) [in Russian].

    MATH  Google Scholar 

  53. V. E. Zaliznyak, Numerical Methods (Izd-vo Yurait, Moscow, 2014) [in Russian].

    Google Scholar 

  54. A. V. Eletskii, L. A. Palkina, and B. M. Smirnov, Transport Phenomena in Weakly Ionized Plasma (Atomizdat, Moscow, 1975) [in Russian].

    Google Scholar 

  55. Yu. N. Zhuk and K. S. Klopovskii, Chem. Phys. Lett. 153, 181 (1988).

    Article  ADS  Google Scholar 

  56. G. Cicala, E. De Tommaso, A. C. Raino, Yu. A. Lebedev, and V. A. Shakhatov, Plasma Sources Sci. Technol. 18, 025032 (2009).

  57. V. A. Shakhatov and O. A. Gordeev, Tech. Phys. 50, 1592 (2005).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to Dr. Sc. Yu.A. Lebedev for useful discussions of the results of this work.

Funding

This work was supported by the State task of the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Shakhatov.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakhatov, V.A. Non-equilibrium Kinetics of Dissociation of Molecular Hydrogen in Microwave Discharge in Liquid Hydrocarbons. Plasma Phys. Rep. 46, 823–836 (2020). https://doi.org/10.1134/S1063780X20080073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X20080073

Keywords:

Navigation