Skip to main content
Log in

Propagation of Microwave Discharge Sustained by Surface Wave in Quartz Tube Filled with Low-Pressure Air

  • LOW-TEMPERATURE PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Propagation was studied of the ionization front of the gas discharge sustained by the microwave surface wave in a quartz tube filled with low-pressure air. In a wide pressure range, the characteristic propagation velocities of the discharge front were measured, as well as the parameters of the stationary plasma column. The experimental results obtained are in satisfactory agreement with the discharge propagation model based on the concept of nonlocal electron heating in the plasma resonance region. The electrodynamic characteristics of the discharge were studied and the electron density averaged over the cross section of the plasma column was measured. Based on the experimental measurements of the ionization and electron loss rates, the electric field distribution was estimated in the ionization front region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. A. W. Trivelpiece, PHd Thesis (California Institute of Technology, Pasadena, 1958).

  2. A. W. Trivelpiece and R. W. Gould, J. Appl. Phys. 30, 1784 (1959). https://doi.org/10.1063/1.1735056

    Article  ADS  Google Scholar 

  3. M. Moisan and Z. Zakrzewski, J. Phys. D: Appl. Phys. 24, 1025 (1991).

    Article  ADS  Google Scholar 

  4. M. Moisan and H. Nowakowska, Plasma Sources Sci. Technol. 27, 073001 (2018). https://doi.org/10.1088/1361-6595/aac528

  5. V. M. Shibkov, A. P. Ershov, V. A. Chernikov, and L. V. Shibkova, Tech. Phys. 50, 455 (2005).

    Article  Google Scholar 

  6. V. M. Shibkov, Moscow Univ. Phys. Bull. (Engl. Transl.) 74, 421 (2019). https://doi.org/10.3103/S002713491905014X

  7. V. M. Shibkov, S. A. Dvinin, A. P. Ershov, R. S. Konstantinovskii, O. S. Surkont, V. A. Chernikov, and L. V. Shibkova, Plasma Phys. Rep. 33, 72 (2007).

    Article  ADS  Google Scholar 

  8. S. A. Dvinin, V. M. Shibkov, and V. V. Mikheev, Plasma Phys. Rep. 32, 601 (2006).

    Article  ADS  Google Scholar 

  9. A. D. MacDonald, Microwave Breakdown in Gases (Wiley, New York, 1966).

    Google Scholar 

  10. M. Moisan, A. Shivarova, and A. W. Trivelpiece, Plasma Phys. 24, 1331 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  11. M. M. Abbasi and S. Asadi, Microwave Opt. Technol. Lett. 59, 806 (2016). https://doi.org/10.1002/mop.30395

    Article  Google Scholar 

  12. M. Moisan and Z. Zakrzewski, J. Phys. D: Appl. Phys. 24, 1025 (1991).

    Article  ADS  Google Scholar 

  13. G. Himmel, I. Koleva, and H. Schlüter, J. Phys. IV 8, PR7-327 (1998). https://doi.org/10.1051/jp4:1998728

    Article  Google Scholar 

  14. A. Böhle, O. Ivanov, A. Kolisko, U. Kortshagen, H. Schlüter, and A. Vikharev, J. Phys. D: Appl. Phys. 29, 369 (1996).

    Article  ADS  Google Scholar 

  15. A. Hamdan, F. Valade, J. Margot, F. Vidal, and J. Matte, Plasma Sources Sci. Technol. 26, 015001 (2016). https://doi.org/10.1088/0963-0252/26/1/015001

  16. A. Gamero, A. Sola, J. Cotrino, and V. Colomer, J. Appl. Phys. 65, 2199 (1989). https://doi.org/10.1063/1.342830

    Article  ADS  Google Scholar 

  17. V. E. Semenov, Plasma Phys. Rep. 8, 347 (1982).

    Google Scholar 

  18. V. L. Ginzburg, The Propagation of Electromagnetic Waves in Plasmas (Nauka, Moscow, 1967; Pergamon, Oxford, 1970).

  19. Yu. M. Aliev, Kratk. Soobshch. Fiz., No. 2, 29 (2000).

  20. O. A. Ivanov and V. A. Koldanov, Plasma Phys. Rep. 26, 902 (2000). https://doi.org/10.1134/1.1316831

    Article  ADS  Google Scholar 

  21. V. E. Golant, Microwave Plasma Diagnostics (Nauka, Moscow, 1968) [in Russian].

    Google Scholar 

  22. Z. S. Chen, L. F. Ma, and J. C. Wang, Int. J. Antennas Propag. 2015, 736090 (2015). https://doi.org/10.1155/2015/736090

  23. K. F. Sergeichev, D. M. Karfidov, S. E. Andreev, Yu. E. Sizov, and V. I. Zhukov, J. Commun. Technol. Electron. 63, 326 (2018).

    Article  Google Scholar 

  24. Yu. P. Raizer, Laser-Induced Discharge Phenomena (Nauka, Moscow, 1974; Consultants Bureau, New York, 1977).

  25. A. V. Gurevich, D. M. Karfidov, N. A. Lukina, and K. F. Sergeichev, Geomagn. Aeron. 20, 953 (1980).

    ADS  Google Scholar 

  26. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1992; Springer, Berlin, 1997).

  27. M. M. Weiner, Monopole Antennas (Marcel Dekker, New York, 2003).

    Book  Google Scholar 

  28. Yu. M. Aliev, H. Schlüter, and A. Shivarova, Guided-Wave-Produced Plasmas (Springer-Verlag, New York, 2000), p. 190.

    Book  Google Scholar 

  29. K. Makasheva and A. Shivarova, Phys. Plasmas 8, 836 (2001). https://doi.org/10.1063/1.1348037

    Article  ADS  Google Scholar 

  30. J. Margot-Chaker, M. Moisan, M. Chaker, V. M. M. Glaude, P. Lauque, J. Paraszczak, and G. Sauvé, J. Appl. Phys. 66, 4134 (1982). https://doi.org/10.1063/1.343998

    Article  ADS  Google Scholar 

  31. E. Benova, I. J. Ghanashev, and I. Zhelyazkov, J. Appl. Phys. 71, 1026 (1992). https://doi.org/10.1063/1.350439

    Article  ADS  Google Scholar 

  32. I. Zhelyazkov and V. Atanassov, Phys. Rep. 255, 79 (1995). https://doi.org/10.1016/0370-1573(94)00092-H

    Article  ADS  Google Scholar 

  33. A. V. Gurevich, Geomagn. Aeron. 15, 633 (1975).

    ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to N.G. Gusein-zade for supporting the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Zhukov.

Additional information

Translated by I. Grishina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukov, V.I., Karfidov, D.M. & Sergeichev, K.F. Propagation of Microwave Discharge Sustained by Surface Wave in Quartz Tube Filled with Low-Pressure Air. Plasma Phys. Rep. 46, 837–845 (2020). https://doi.org/10.1134/S1063780X20080127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X20080127

Keywords:

Navigation