Skip to main content
Log in

Phylogenomic analysis and morphological data suggest left-right swimming behavior evolved prior to the origin of the pelagic Phylliroidae (Gastropoda: Nudibranchia)

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

Evolutionary transitions from benthic to pelagic habitats are major adaptive shifts. Investigations into such shifts are critical for understanding the complex interaction between co-opting existing traits for new functions and novel traits that originate during or post-transition. Gastropod mollusks are of particular interest in regard to benthic-pelagic evolutionary transitions, as shifts from benthic to pelagic habitats are uncommon. Phylliroe is one such pelagic lineage in Phylliroidae, a family of holoplanktonic nudibranchs with a highly aberrant morphology that appears to be adapted for life in the pelagic zone. However, the phylogenetic placement of this enigmatic group of pelagic nudibranchs has never been investigated. Here we present phylogenomic analyses which place Phylliroe within a group of nudibranchs called Dendronotida sensu stricto. We also discuss a subset of the morphological and behavioral features that Phylliroe shares with other closely related lineages (Dendronotidae, Tethyidae, and Scyllaeidae) and some that are unique to Phylliroe. Based on these data, and a literature review, we find a number of unique features found in Phylliroe that are adaptations to a pelagic environment, such as a fish-like body plan, highly reduced connective and muscular tissue in the notum, and elongated rhinophores. However, we were able to identify only a single commonality among Phylliroe and its closely related lineages, which is the presence of left-right swimming behavior. We further hypothesize that swimming behavior in this group likely represents an important trait that facilitated the transition from benthic to pelagic environments, and thus may provide evidence that major pelagic lifestyle transitions can rely on behavioral exaptations. These new insights into the origins of Phylliroe now provide a phylogenetic framework for testing for adaptations necessary for the benthic-pelagic transition in this group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Aligned data matrices, tree files, and images for morphological data are available in the Dryad Digital Repository (https://doi.org/10.6075/J04J0CHG). Newly sequenced transcriptome data are available in the NCBI Sequence Read Archive (SRR12006001 & SRR12006002; see Tables S1, 2, 3, 4).

References

  • Angas, G. F. (1864). Description d’espèces nouvelles appartenant a plusieurs genres de mollusques nudibranches des environs de Port-Jackson: (Nouvelle-Galles du Sud) accompagnée de dessins faits d’après nature. Journal de Conchyliologie, 3(12), 43–70.

    Google Scholar 

  • Ankel, W. E. (1952). Phyllirrhoe bucephala Per. & Les. und die Meduse Mnestra parasites Krohn. Pubblicazioni della Stazione Zoologica di Napoli, 23, 91–140.

    Google Scholar 

  • Appeltans, W., Ahyong, S. T., Anderson, G., Angel, M. V., Artois, T., Bailly, N., Bamber, R., Barber, A., Bartsch, I., Berta, A., Błażewicz-Paszkowycz, M., Bock, P., Boxshall, G., Boyko, C. B., Brandão, S. N., Bray, R. A., Bruce, N. L., Cairns, S. D., Chan, T. Y., Cheng, L., Collins, A. G., Cribb, T., Curini-Galletti, M., Dahdouh-Guebas, F., Davie, P. J. F., Dawson, M. N., de Clerck, O., Decock, W., de Grave, S., de Voogd, N. J., Domning, D. P., Emig, C. C., Erséus, C., Eschmeyer, W., Fauchald, K., Fautin, D. G., Feist, S. W., Fransen, C. H. J. M., Furuya, H., Garcia-Alvarez, O., Gerken, S., Gibson, D., Gittenberger, A., Gofas, S., Gómez-Daglio, L., Gordon, D. P., Guiry, M. D., Hernandez, F., Hoeksema, B. W., Hopcroft, R. R., Jaume, D., Kirk, P., Koedam, N., Koenemann, S., Kolb, J. B., Kristensen, R. M., Kroh, A., Lambert, G., Lazarus, D. B., Lemaitre, R., Longshaw, M., Lowry, J., Macpherson, E., Madin, L. P., Mah, C., Mapstone, G., McLaughlin, P. A., Mees, J., Meland, K., Messing, C. G., Mills, C. E., Molodtsova, T. N., Mooi, R., Neuhaus, B., Ng, P. K. L., Nielsen, C., Norenburg, J., Opresko, D. M., Osawa, M., Paulay, G., Perrin, W., Pilger, J. F., Poore, G. C. B., Pugh, P., Read, G. B., Reimer, J. D., Rius, M., Rocha, R. M., Saiz-Salinas, J. I., Scarabino, V., Schierwater, B., Schmidt-Rhaesa, A., Schnabel, K. E., Schotte, M., Schuchert, P., Schwabe, E., Segers, H., Self-Sullivan, C., Shenkar, N., Siegel, V., Sterrer, W., Stöhr, S., Swalla, B., Tasker, M. L., Thuesen, E. V., Timm, T., Todaro, M. A., Turon, X., Tyler, S., Uetz, P., van der Land, J., Vanhoorne, B., van Ofwegen, L. P., van Soest, R. W. M., Vanaverbeke, J., Walker-Smith, G., Walter, T. C., Warren, A., Williams, G. C., Wilson, S. P., & Costello, M. J. (2012). The magnitude of global marine species diversity. Current Biology: CB, 22(23), 2189–2202.

    CAS  PubMed  Google Scholar 

  • Ascanius, P. (1774). Beskrivelse over en Norske sneppe og et sødyr. Det Kongelige Norske Videnskabers Selskabs Skrifter, 5, 153–158 pl. 5.

    Google Scholar 

  • Ayres, D. L., Darling, A., Zwickl, D. J., Beerli, P., Holder, M. T., Lewis, P. O., et al. (2012). BEAGLE: an application programming interface and high-performance computing library for statistical phylogenetics. Systematic Biology. https://doi.org/10.1093/sysbio/syr100.

  • Bergh, R. (1884). Report of the Nudibranchiata dredged by H. M. S. Challenger during the years 1873–1876. Report on the scientific results of the voyage of H. M. S. Challenger, Zoology, 10, 154. 14 pls.

  • Birney, E., Clamp, M., & Durbin, R. (2004). GeneWise and genomewise. Genome Research, 14(5), 988–995.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Borrell, B. J., Goldbogen, J. A., & Dudley, R. (2005). Aquatic wing flapping at low Reynolds numbers: swimming kinematics of the Antarctic pteropod, Clione antarctica. The Journal of Experimental Biology, 208(Pt 15), 2939–2949.

    PubMed  Google Scholar 

  • Bouchet, P., Rocroi, J.-P., Hausdorf, B., Kaim, A., Kano, Y., Nützel, A., Parkhaev, P., Schrödl, M., & Strong, E. E. (2017). Revised classification, nomenclator and typification of gastropod and Monoplacophoran families. Malacologia, 61(1-2), 1–526.

    Google Scholar 

  • Ce, D., Yasuda, F., & Imai, C. (1979). Elongate dermal appendages in species of Yozia (Syngnathidae) with remarks on Trachyrhamphus. Japanese Journal of Ichthyology, 25(4), 244–250.

  • Chen, J. V. J.-Y. (2000). The Early Cambrian colonization of pelagic niches exemplified by Isoxys (Arthropoda). Lethaia, 33(4), 295–311.

    Google Scholar 

  • Doubleday, Z. A., Prowse, T. A. A., Arkhipkin, A., Pierce, G. J., Semmens, J., Steer, M., Leporati, S. C., Lourenço, S., Quetglas, A., Sauer, W., & Gillanders, B. M. (2016). Global proliferation of cephalopods. Current Biology: CB, 26(10), R406–R407.

    CAS  Google Scholar 

  • Drummond, A. J., Ho, S. Y. W., Phillips, M. J., & Rambaut, A. (2006). Relaxed phylogenetics and dating with confidence. PLoS Biology, 4(5), e88.

    PubMed  PubMed Central  Google Scholar 

  • Ebersberger, I., Strauss, S., & von Haeseler, A. (2009). HaMStR: profile hidden markov model based search for orthologs in ESTs. BMC Evolutionary Biology, 9, 157.

    PubMed  PubMed Central  Google Scholar 

  • Eddy, S. R. (2011). Accelerated profile HMM searches. PLoS Computational Biology, 7(10), e1002195.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eliot, C. (1902). Nudibranchs from Zanzibar and East Africa. Zoological Society of London, 2, 62–67.

    Google Scholar 

  • Gegenbaur, C. (1857). Versuch eines Systems der Medusen, mit Beschreibung neuer oder wenig gekannter Formen; zugleich ein Beitrag zur Kenntnis der Fauna des Mittelmeeres. Zeitschrift fuer wissenschaftliche Zoologie, 8, 202–273.

    Google Scholar 

  • Gilmer, R. W., & Harbison, G. R. (1986). Morphology and field behavior of pteropod molluscs: feeding methods in the families Cavoliniidae, Limacinidae and Peraclididae (Gastropoda: Thecosomata). Marine Biology, 91(1), 47–57.

    Google Scholar 

  • Goodheart, J. A., Bazinet, A. L., Collins, A. G., & Cummings, M. P. (2015). Relationships within Cladobranchia (Gastropoda: Nudibranchia) based on RNA-Seq data: an initial investigation. Royal Society Open Science, 2, 150196.

  • Goodheart, J. A., Bazinet, A. L., Valdés, Á., Collins, A. G., & Cummings, M. P. (2017). Prey preference follows phylogeny: evolutionary dietary patterns within the marine gastropod group Cladobranchia (Gastropoda: Heterobranchia: Nudibranchia). BMC Evolutionary Biology, 17(1), 221.

    PubMed  PubMed Central  Google Scholar 

  • Gould, A. A. (1852). Mollusca and shells. In: United States Exploring Expedition during the years 1838, 1839, 1840, 1841, 1842 under the command of Charles Wilkes (pp.1-510). Boston.

  • Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., di Palma, F., Birren, B. W., Nusbaum, C., Lindblad-Toh, K., Friedman, N., & Regev, A. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29(7), 644–652.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haddock, S. H. D., Moline, M. A., & Case, J. F. (2010). Bioluminescence in the sea. Annual Review of Marine Science, 2, 443–493.

    PubMed  Google Scholar 

  • Herring, P. J. (1987). Systematic distribution of bioluminescence in living organisms. Journal of Bioluminescence and Chemiluminescence, 1(3), 147–163.

    CAS  PubMed  Google Scholar 

  • Horton, T., Kroh, A., Ahyong, S., Bailly, N., Boyko, C. B., Brandão S. N., et al. (2020). World Register of Marine Species (WoRMS). WoRMS Editorial Board. http://www.marinespecies.org. Accessed 13 Mar 2020.

  • Ibáñez, C. M., Braid, H. E., Carrasco, S. A., López-Córdova, D. A., Torretti, G., & Camus, P. A. (2019). Zoogeographic patterns of pelagic oceanic cephalopods along the eastern Pacific Ocean. Journal of Biogeography, 46(6), 1260–1273.

    Google Scholar 

  • Johnsen, S., Widder, E. A., & Mobley, C. D. (2004). Propagation and perception of bioluminescence: factors affecting counterillumination as a cryptic strategy. The Biological Bulletin, 207(1), 1–16.

    PubMed  Google Scholar 

  • Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30(4), 772–780.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kelaart, E. F. (1858). Description of new and little known species of Ceylon nudibranchiate molluscs, and zoophytes. Journal of the Ceylon Branch of the Royal Asiatic Society, 3(1), 84–139.

    Google Scholar 

  • Klussmann-Kolb, A., & Dinapoli, A. (2006). Systematic position of the pelagic Thecosomata and Gymnosomata within Opisthobranchia (Mollusca, Gastropoda)-revival of the Pteropoda. Journal of Zoological Systematics and Evolutionary Research, 44(2), 118–129.

    Google Scholar 

  • Klussmann-Kolb, A., Dinapoli, A., Kuhn, K., Streit, B., & Albrecht, C. (2008). From sea to land and beyond–new insights into the evolution of euthyneuran Gastropoda (Mollusca). BMC Evolutionary Biology, 8(1), 57.

    PubMed  PubMed Central  Google Scholar 

  • Kozlov, A., Darriba, D., Flouri, T., Morel, B., & Stamatakis, A. (2019). RAxML-NG: a fast, scalable, and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics, 35(21), 4453–4455.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lalli, C. M., & Gilmer, R. W. (1989). Pelagic snails: the biology of holoplanktonic gastropod mollusks. Palo Alto: Stanford University Press.

  • Lamarck, J. B. P. A., & de de, M. (1816). Mollusques et polypes divers. Tableau Encyclopédique et Méthodique des Trois Règnes de la Nature Part 23, Tome, 3, 1–16.

    Google Scholar 

  • Lansdell, M., & Young, J. (2007). Pelagic cephalopods from eastern Australia: species composition, horizontal and vertical distribution determined from the diets of pelagic fishes. Reviews in Fish Biology and Fisheries, 17(2-3), 125–138.

    Google Scholar 

  • Lawrence, K. A., & Watson III, W. H. (2002). Swimming behavior of the nudibranch Melibe leonina. The Biological Bulletin, 203(2), 144–151.

    CAS  Google Scholar 

  • Lister, A. M. (2014). Behavioural leads in evolution: evidence from the fossil record. Biological Journal of the Linnean Society, 112(2), 315–331.

    Google Scholar 

  • Long, J. A., & Gordon, M. S. (2004). The greatest step in vertebrate history: a paleobiological review of the fish-tetrapod transition. Physiological and biochemical zoology: PBZ, 77(5), 700–719.

    Google Scholar 

  • MacFarland, F. M. (1966). Studies of opisthobranchiate mollusks of the Pacific coast of North America. Memoirs of the California Academy of Sciences, 6, 1–546.

    Google Scholar 

  • Martin, R., & Brinckmann, A. (1963). Zum Brutparasitismus van Phyllirrhoe bucephala Per. and Les. (Gastropoda, Nudibranchia) auf der Meduse Zanclea costata (Hydrozoa, Anthomedusa). Pubblicazioni della Stazione Zoologica di Napoli, 33, 206–223.

    Google Scholar 

  • Martini, S., & Haddock, S. H. D. (2017). Quantification of bioluminescence from the surface to the deep sea demonstrates its predominance as an ecological trait. Scientific Reports, 7, 45750.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martini, S., Kuhnz, L., Mallefet, J., & Haddock, S. H. D. (2019). Distribution and quantification of bioluminescence as an ecological trait in the deep sea benthos. Scientific Reports, 9(1), 14654.

    PubMed  PubMed Central  Google Scholar 

  • Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. 2010 Gateway Computing Environments Workshop (GCE). https://doi.org/10.1109/gce.2010.5676129.

  • Newcomb, J. M., Sakurai, A., Lillvis, J. L., Gunaratne, C. A., & Katz, P. S. (2012). Homology and homoplasy of swimming behaviors and neural circuits in the Nudipleura (Mollusca, Gastropoda, Opisthobranchia). Proceedings of the National Academy of Sciences, 109, 10669–10676.

  • Nylander, J. (2013). Catfasta2phyml. Program distributed by the author. Uppsala: Evolutionary Biology Center, Uppsala University.

    Google Scholar 

  • Orrell, T. (2016). NMNH Extant Specimen Records. https://doi.org/10.15468/hnhrg3.

  • Pearson, W. R., & Lipman, D. J. (1988). Improved tools for biological sequence comparison. Proceedings of the National Academy of Sciences, 85(8), 2444–2448.

    CAS  Google Scholar 

  • Rambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. A. (2018). Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67(5), 901–904.

  • Risbec, J. (1937). Note Préliminaire au sujet de Nudibranches Néo-Calédoniens. Bulletin du Muséum National d’Histoire Naturelle Series, 2(9), 159–164.

    Google Scholar 

  • Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., & Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3), 539–542.

    PubMed  PubMed Central  Google Scholar 

  • Rudman, W. B. (2000). Notobryon wardi Odhner, 1936. Sea Slug Forum. Australian Museum, Sydney. http://www.seaslugforum.net/find/notoward. Accessed 12 December 2019.

  • Sakurai, A., Newcomb, J. M., Lillvis, J. L., & Katz, P. S. (2011). Different roles for homologous interneurons in species exhibiting similar rhythmic behaviors. Current Biology, 21(12), 1036–1043.

    CAS  PubMed  Google Scholar 

  • Satterlie, R. A., Goslow, G. E., & Reyes, A. (1990). Two types of striated muscle suggest two-geared swimming in the pteropod mollusc Clione limacina. Journal of Experimental Zoology, 255(2), 131–140.

  • Schmekel, L., & Portmann, A. (1982. Opisthobranchia des Mittelmeeres. Berlin: Springer-Verlag.

  • Seibel, B. A., Thuesen, E. V., Childress, J. J., & Gorodezky, L. A. (1997). Decline in pelagic cephalopod metabolism with habitat depth reflects differences in locomotory efficiency. The Biological Bulletin, 192(2), 262–278.

    CAS  PubMed  Google Scholar 

  • Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., & Zdobnov, E. M. (2015). BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 31(19), 3210–3212.

    PubMed  Google Scholar 

  • Steinberg, J. E. (1956). The pelagic nudibranch, Cephalopyge trematoides (Chun, 1889), in New South Wales with a note on other species in this genus. Proceedings of the Linnean Society of New South Wales, 81, 184–192.

    Google Scholar 

  • Strong, E. E., Gargominy, O., Ponder, W. F., & Bouchet, P. (2007). Global diversity of gastropods (Gastropoda; Mollusca) in freshwater. In E. V. Balian, C. Lévêque, H. Segers, & K. Martens (Eds.), Freshwater animal diversity assessment (Vol. 198) (pp. 149–166). Dordrecht: Springer.

    Google Scholar 

  • Tavaré, S. (1986). Some probabilistic and statistical problems in the analysis of DNA sequences. In R. M. Miura (Ed.), In some mathematical questions in biology—DNA sequence analysis (pp. 57–86). Providence: American Mathematical Society.

    Google Scholar 

  • Thalén, F. (2018). PhyloPyPruner: tree-based orthology inference for phylogenomics with new methods for identifying and excluding contamination. University of Tuebingen. Retrieved from http://lup.lub.lu.se/student-papers/record/8963554.

  • Thiele, J. (1912). Die antarktischen Schnecken und Muscheln. Deutsche Siidpolarexpedition 1901-03, Zoologie V, Berlin, 186-285.

  • Thompson, T. E., & Brown, G. H. (1981). Biology and relationships of the nudibranch mollusc Notobryon wardi in South Africa, with a review of the Scyllaeidae. Journal of Zoology, 194(4), 437–444.

    Google Scholar 

  • Towns, J., Cockerill, T., Dahan, M., Foster, I., Gaither, K., Grimshaw, A., et al. (2014). XSEDE: accelerating scientific discovery. Computing in Science & Engineering, 16(5), 62–74.

  • Vallès, Y., & Gosliner, T. M. (2006). Shedding light onto the genera (Mollusca: Nudibranchia) Kaloplocamus and Plocamopherus with description of new species belonging to these unique bioluminescent dorids. The Veliger, 48, 178–205.

    Google Scholar 

  • Vermeij, G. J., & Dudley, R. (2000). Why are there so few evolutionary transitions between aquatic and terrestrial ecosystems? Biological Journal of the Linnean Society, 70(4), 541–554.

    Google Scholar 

  • Voskoboinikova, O., William Detrich, H., Craig Albertson, R., Postlethwait, J. H., Ghigliotti, L., & Pisano, E. (2017). Evolution reshaped life for the water column: the skeleton of the Antarctic silverfish Pleuragramma antarctica Boulenger, 1902. In Vacchi M., Pisano E., Ghigliotti L. (eds), The Antarctic Silverfish: a Keystone Species in a Changing Ecosystem. https://doi.org/10.1007/978-3-319-55893-6_1.

  • Wägele, H. (1998). Histological investigation of some organs and specialized cellular structures in Opisthobranchia (Gastropoda) with the potential to yield phylogenetically significant characters. Zoologischer Anzeiger, 236, 119–131.

    Google Scholar 

  • Wägele, H., & Willan, R. C. (2000). Phylogeny of the nudibranchia. Zoological Journal of the Linnean Society, 130(1), 83–181. https://doi.org/10.1111/j.1096-3642.2000.tb02196.x.

  • Wägele, H., Ballesteros, M., & Avila, C. (2006). Defensive glandular structures in opisthobranch molluscs—from histology to ecology. Oceanography and Marine Biology, 44, 197–276.

  • Wyeth, R. C., & Dennis Willows, A. O. (2006). Field behavior of the nudibranch mollusc Tritonia diomedea. The Biological Bulletin, 210(2), 81–96.

    PubMed  Google Scholar 

  • Yang, Z. (1993). Maximum-likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. Molecular Biology and Evolution, 10(6), 1396–1401.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Maik Scherholz (former student with HW at ZFMK) who compiled much of the morphological data for the Dendronotida s.l., Steve Haddock and Lynne Christianson of MBARI for access to a tissue sample for Phylliroe bucephala, and Karen Cheney of the University of Queensland for the sample of Pteraeolidia ianthina. Use was made of computational facilities purchased with funds from the National Science Foundation (CNS-1725797) and administered by the Center for Scientific Computing (CSC). The CSC is supported by the California NanoSystems Institute and the Materials Research Science and Engineering Center (MRSEC; NSF DMR 1720256) at UC Santa Barbara. We are also grateful to the Laboratories of Analytical Biology of the National Museum of Natural History for use of the molecular laboratory facilities. We further thank two anonymous reviewers for their constructive comments, which helped us to improve this manuscript.

Funding

JAG. was supported by the NSF (PRFB Award: 1711201). Funding for RNA sequencing was provided by a Peter Buck Predoctoral Fellowship to JAG from the Smithsonian Institution. Part of the morphological study was performed with financial support of the German Science Foundation (DFG) to HW (Wa 618/10).

Author information

Authors and Affiliations

Authors

Contributions

JAG and HW conceived the study and participated in study design; HW collected morphological data; JAG collected molecular data; JAG and HW participated in morphological and molecular data analysis, helped draft the manuscript, and gave final approval for publication.

Corresponding author

Correspondence to Jessica A. Goodheart.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(XLSX 11 kb)

ESM 2

(XLSX 13 kb)

ESM 3

(XLSX 11 kb)

ESM 4

(XLSX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goodheart, J.A., Wägele, H. Phylogenomic analysis and morphological data suggest left-right swimming behavior evolved prior to the origin of the pelagic Phylliroidae (Gastropoda: Nudibranchia). Org Divers Evol 20, 657–667 (2020). https://doi.org/10.1007/s13127-020-00458-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-020-00458-9

Keywords

Navigation