Skip to main content
Log in

Curcumin promotes oxidative stress, apoptosis and autophagy in H9c2 rat cardiomyoblasts

  • Original Article
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Background

Curcumin, a polyphenol derived from Curcuma longa, has some adverse effects on heart; however, its toxic effects on cardiac cells are poorly understood.

Objective

To evaluate the toxicity of curcumin on H9c2 rat cardiomyoblasts. To this, H9c2 cells were exposed to different concentrations of curcumin and proliferation, viability, cell cycle, oxidative stress, mitochondrial membrane potential (ΔΨm), death and autophagy were evaluated.

Results

Curcumin caused concentration-dependent inhibition of H9c2 cells proliferation and viability. A higher sub-G1 population was observed in cells treated with curcumin, which was related with phosphatidylserine translocation and increase of activated caspase-9, indicating apoptotic death. Curcumin induced oxidative stress and decreased ΔΨm causing mitochondrial dysfunction. Additionally, it promoted autophagy, revealed by higher LC3B and beclin-1 protein expression and mitophagy.

Conclusion

Curcumin exhibited toxic effects in cardiac cells and further studies are required to validate its therapeutic potential and use as anti-inflammatory and anti-oxidant agent in the cardiovascular system.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ROS:

Reactive oxygen species

H2DCFDA:

2,7-Dichlorodihydrofluorescein diacetate

Rh123:

Rhodamine 123

ΔΨm:

Mitochondrial membrane potential

LC3:

Microtubule-associated protein 1A/1B-light chain 3

References

  • Ahsan H, Parveen N, Khan NU, Hadi SM (1999) Pro-oxidant, anti-oxidant and cleavage activities on DNA of curcumin and its derivatives demethoxycurcumin and bisdemethoxycurcumin. Chem Biol Int 121:161–175

    CAS  Google Scholar 

  • Ak T, Gülçin I (2008) Antioxidant and radical scavenging properties of curcumin. Chem Biol Interact 174:27–37

    CAS  PubMed  Google Scholar 

  • Anderson MD, Jaggetia GC, Aggerwal BB (2007) ‘‘Spicing up’’ of the immune system by curcumin. J Clin Immunol 27:19–35

    Google Scholar 

  • Atsumi T, Murakami Y, Shibuya K, Tonosaki K, Fujisawa S (2005) Induction of cytotoxicity and apoptosis and inhibition of cyclooxygenase-2 gene expression, by curcumin and its analog, alpha-diisoeugenol. Anticancer Res 25:4029–4036

    CAS  PubMed  Google Scholar 

  • Barth S, Glick D, Macleod KF (2010) Autophagy: assays and artifacts. J Pathol 221:117–124

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhaumik S, Anjium R, Rangaraj N, Pardhasaradhi BVV, Khar A (1999) Curcumin mediated apoptosis in AK-5 tumor cells involves the production of reactive oxygen intermediates. FEBS Lett 456:311–314

    CAS  PubMed  Google Scholar 

  • Bielak-Zmijewska A, Koronkiewicz M, Skierski J, Piwocka K, Radziszewska E, Sikora E (2000) Effect of curcumin on the apoptosis of rodent and human non proliferating and proliferating lymphoid cells. Nutr Cancer 38:131–138

    CAS  PubMed  Google Scholar 

  • Brosková Z, Drábiková K, Sotníková R, Fialová S, Knezl V (2013) Effect of plant polyphenols on ischemia-reperfusion injury of the isolated rat heart and vessels. Phytother Res 27:1018–1022

    PubMed  Google Scholar 

  • Chiu T, Su C (2009) Curcumin inhibits proliferation and migration by increasing the Bax to Bcl-2 ratio and decreasing NF-κB p65 expression in breast cancer MDA-MB-231 cells. Int J Mol Med 23:469–475

    CAS  PubMed  Google Scholar 

  • Choudhuri T, Pal S, Agwarwal ML, Das T, Sa G (2002) Curcumin induces apoptosis in human breast cancer cells through p53-dependent Bax induction. FEBS Lett 512:334–340

    CAS  PubMed  Google Scholar 

  • Cianfruglia L, Minnelli C, Laudadio E, Scirè A, Armeni T (2019) Side effects of curcumin: epigenetic and antiproliferative implications for normal dermal fibroblast and breast cancer cells. Antioxidants (Basel) 8:382–394

    CAS  Google Scholar 

  • Dudás J, Fullár A, Romani A, Pritz C, Kovalszky I, Hans Schartinger V, Mathias Sprinzl G, Riechelmann H (2013) Curcumin targets fibroblast-tumor cell interactions in oral squamous cell carcinoma. Exp Cell Res 319:800–809

    PubMed  PubMed Central  Google Scholar 

  • Eisenberg-Lerner A, Bialik S, Simon HU, Kimchi A (2009) Apoptosis, autophagy and the cross-talk between them. Cell Death Differ 16:966–975

    CAS  PubMed  Google Scholar 

  • Fang J, Lu J, Holmgren A (2005) Thioredoxin reductase is irreversibly modified by curcumin: a novel molecular mechanism for its anticancer activity. J Biol Chem 280:25284–25290

    CAS  PubMed  Google Scholar 

  • Farhangkhoee H, Khan ZA, Chen S, Chakrabarti S (2006) Differential effects of curcumin on vasoactive factors in the diabetic rat heart. Nutr Metab (Lond) 3:27

    Google Scholar 

  • Fu H, Wang C, Yang D, Wei Z, Xu J, Hu Z, Cai Q (2018) Curcumin regulates proliferation, autophagy, and apoptosis in gastric cancer cells by affecting PI3K and P53 signaling. J Cell Physiol 233:4634–4642

    CAS  PubMed  Google Scholar 

  • Gozuacik D, Bialik S, Raveh T, Mitou G, Shohat G, Sabanay H, Mizushima N, Yoshimori T, Kimchi A (2008) DAP-kinase is a mediator of endoplasmic reticulum stress-induced caspase activation and autophagic cell death. Cell Death Differ 5:1875–1886

    Google Scholar 

  • Hill SM, Wrobel L, Rubinsztein DC (2019) Post-translational modifications of Beclin 1 provide multiple strategies for autophagy regulation. Cell Death Differ 26:617–629

    CAS  PubMed  Google Scholar 

  • Hosseini A, Hosseinzadeh H (2018) Antidotal or protective effects of Curcuma longa (turmeric) and its active ingredient, curcumin, against natural and chemical toxicities: a review. Biomed Pharmacother 99:411–421

    CAS  PubMed  Google Scholar 

  • Hosseinzadeh L, Behravan J, Mosaffa F, Bahrami G, Bahrami A, Karimi G (2011) Curcumin potentiates doxorubicin-induced apoptosis in H9c2 cardiac muscle cells through generation of reactive oxygen species. Food Chem Toxicol 49:1102–1109

    CAS  PubMed  Google Scholar 

  • Jackson SJ, Murphy LL, Venema RC, Singletary KW, Young AJ (2013) Curcumin binds tubulin, induces mitotic catastrophe, and impedes normal endothelial cell proliferation. Food Chem Toxicol 60:431–438

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jaruga E, Sokal A, Chrul S, Bartosz G (1998) Apoptosis-independent alterations in membrane dynamics induced by curcumin. Exp Cell Res 245:303–312

    CAS  PubMed  Google Scholar 

  • Jayaprakasha GK, Rao LJM, Sakariah KK (2005) Chemistry and biological activities of C. longa. Trends Food Sci Technol 16:533–548

    CAS  Google Scholar 

  • Jiang S, Han J, Li T, Xin Z, Ma Z, Di W, Hu W, Gong B, Di S, Wang D, Yang Y (2017) Curcumin as a potential protective compound against cardiac diseases. Pharmacol Res 119:373–383

    CAS  PubMed  Google Scholar 

  • Jia YL, Li J, Qin ZH, Liang ZQ (2009) Autophagic and apoptotic mechanisms of curcumin-induced death in K562 cells. J Asian Nat Prod Res 11:918–928

    CAS  PubMed  Google Scholar 

  • Kang R, Zeh HJ, Lotze MT, Tang D (2011) The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 18:571–580

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karunagaran D, Rashmi R, Kumar TR (2005) Induction of apoptosis by curcumin and its implications for cancer therapy. Curr Cancer Drug Targets 5:117–129

    CAS  PubMed  Google Scholar 

  • Katanasaka Y, Sunagawa Y, Hasegawa K, Morimoto T (2013) Application of curcumin to heart failure therapy by targeting transcriptional pathway in cardiomyocytes. Biol Pharm Bull 36:13–17

    CAS  PubMed  Google Scholar 

  • Kaushik G, Kaushik T, Yadav SK, Sharma SK, Ranawat P, Khanduja KL, Pathak CM (2012) Curcumin sensitizes lung adenocarcinoma cells to apoptosis via intracellular redox status mediated pathway. Indian J Exp Biol 50:853–861

    CAS  PubMed  Google Scholar 

  • Korwek Z, Bielak-Zmijewska A, Mosieniak G, Alster O, Moreno-Villanueva M, Burkle A, Sikora E (2013) DNA damage-independent apoptosis induced by curcumin in normal resting human T cells and leukaemic Jurkat cells. Mutagenesis 28:411–416

    CAS  PubMed  Google Scholar 

  • Li HL, Liu C, de Couto G, Ouzounian M, Sun M, Wang AB, Huang Y, He CW, Shi Y, Chen X, Nghiem MP, Liu Y, Chen M, Dawood F, Fukuoka M, Maekawa Y, Zhang L, Leask A, Ghosh AK, Kirshenbaum LA, Liu PP (2008) Curcumin prevents and reverses murine cardiac hypertrophy. J Clin Invest 118:879–893

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Feng K, Li J, Yu D, Fan Q, Tang T, Yao X, Wang X (2017) Curcumin inhibits apoptosis of chondrocytes through activation ERK1/2 signaling pathways induced autophagy. Nutrients 9:E414

    PubMed  Google Scholar 

  • Maejima Y, Isobe M, Sadoshima J (2016) Regulation of autophagy by beclin 1 in the heart. J Mol Cell Cardiol 95:19–25

    CAS  PubMed  Google Scholar 

  • Magalska A, Brzezinska A, Bielak-Zmijewska A, Piwocka K, Mosieniak G, Sikora E (2006) Curcumin induces cell death without oligonucleosomal DNA fragmentation in quiescent and proliferating human CD8+ cells. Acta Biochim Pol 53:531–538

    CAS  PubMed  Google Scholar 

  • Mann SS, Hammarback JA (1994) Molecular characterization of light chain 3. A microtubule binding subunit of MAP1A and MAP1B. J Biol Chem 269:11492–11497

    CAS  PubMed  Google Scholar 

  • Martínez J, Almendinger J, Oberst A, Ness R, Dillon CP, Fitzgerald P, Hengartner MO, Green DR (2011) Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells. Proc Natl Acad Sci USA 108:17396–17401

    PubMed  Google Scholar 

  • Montiel-Dávalos A, Silva Sánchez GJ, Huerta-García E, Rueda-Romero C, Soca Chafre G, Mitre-Aguilar IB, Alfaro-Moreno E, Pedraza-Chaverri J, López-Marure R (2017) Curcumin inhibits activation induced by urban particulate material or titanium dioxide nanoparticles in primary human endothelial cells. PLoS ONE 12:e0188169

    PubMed  PubMed Central  Google Scholar 

  • Morimoto T, Sunagawa Y, Kawamura T, Takaya T, Wada H, Nagasawa A, Komeda M, Fujita M, Shimatsu A, Kita T, Hasegawa K (2008) The dietary compound curcumin inhibits p300 histone acetyltransferase activity and prevents heart failure in rats. J Clin Invest 118:868–878

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pari L, Tewas D, Eckel J (2008) Role of curcumin in health and disease. Arch Physiol Biochem 114:127–149

    CAS  PubMed  Google Scholar 

  • Qian W, Liu J, Jin J, Ni W, Xu W (2007) Arsenic trioxide induces not only apoptosis but also autophagic cell death in leukemia cell lines via up-regulation of Beclin-1. Leuk Res 31:329–339

    PubMed  Google Scholar 

  • Qiu P, Man S, Li J, Liu J, Zhang L, Yu P, Gao W (2016) Overdose intake of curcumin initiates the unbalanced state of bodies. J Agric Food Chem 64:2765–2771

    CAS  PubMed  Google Scholar 

  • Ranjan AP, Mukerjee A, Helson L, Vishwanatha JK (2013) Mitigating prolonged qt interval in cancer nanodrug development for accelerated clinical translation. J Nanobiotechnol 11:40–47

    Google Scholar 

  • Reuter S, Eifes S, Dicato M, Aggarwal BB, Diederich M (2008) Modulation of anti-apoptotic and survival pathways by curcumin as a strategy to induce apoptosis in cancer cells. Biochem Pharmacol 76:1340–1351

    CAS  PubMed  Google Scholar 

  • Reyes-Fermín LM, González-Reyes S, Tarco-Álvarez NG, Hernández-Nava M, Orozco-Ibarra M, Pedraza-Chaverri J (2012) Neuroprotective effect of α-mangostin and curcumin against iodoacetate-induced cell death. Nutr Neurosci 15:34–41

    PubMed  Google Scholar 

  • Romero-Hernández MA, Eguía-Aguilar P, Perézpeña-DiazConti M, Rodríguez-Leviz A, Sadowinski-Pine S, Velasco-Rodríguez LA, Cáceres-Cortés JR, Arenas-Huertero F (2013) Toxic effects induced by curcumin in human astrocytoma cell lines. Toxicol Mech Methods 23:650–659

    PubMed  Google Scholar 

  • Saab MB, Bec N, Martin M, Estephan E, Cuisinier F, Larroque C, Gergely C (2013) Differential effect of curcumin on the nanomechanics of normal and cancerous mammalian epithelial cells. Cell Biochem Biophys 65:399–411

    CAS  PubMed  Google Scholar 

  • Saha S, Panigrahi DP, Patil S, Bhutia SK (2018) Autophagy in health and disease: a comprehensive review. Biomed Pharmacother 104:485–495

    CAS  PubMed  Google Scholar 

  • Sánchez CA, Rodríguez E, Varela E, Zapata E, Páez A, Massó FA, Montaño LF, López-Marure R (2008) Statin-induced inhibition of MCF-7 breast cancer cell proliferation is related to cell cycle arrest and apoptotic and necrotic cell death mediated by an enhanced oxidative stress. Cancer Invest 26:698–707

    PubMed  Google Scholar 

  • Scherz-Shouval R, Elazar Z (2007) ROS, mitochondria and the regulation of autophagy. Trends Cell Biol 17:422–427

    CAS  PubMed  Google Scholar 

  • Shishodia S, Sethi G, Aggarwal BB (2005) Curcumin: getting back to the roots. Ann N Y Acad Sci 1056:206–217

    CAS  PubMed  Google Scholar 

  • Singh S, Aggarwal BB (1995) Activation of transcription factor NF-kappa B is suppressed by curcumin (diferuloylmethane). J Biol Chem 270:24995–25000

    CAS  PubMed  Google Scholar 

  • Song S, Tan J, Miao Y, Li M, Zhang Q (2017) Crosstalk of autophagy and apoptosis: Involvement of the dual role of autophagy under ER stress. Cell Physiol 232:2977–2984

    CAS  Google Scholar 

  • Soni KB, Kuttan R (1992) Effect of oral curcumin administration on serum peroxides and cholesterol levels in human volunteers. Indian J Physiol Pharmacol 36:273–275

    CAS  PubMed  Google Scholar 

  • Strimpakos AS, Sharma RA (2008) Curcumin: preventive and therapeutic properties in laboratory studies and clinical trials. Antioxid Redox Signal 10:511–545

    CAS  Google Scholar 

  • Talib WH, Al-Hadid SA, Ali MBW, Al-Yasari IH, Ali MRA (2018) Role of curcumin in regulating p53 in breast cancer: an overview of the mechanism of action. Breast Cancer (Dove Med Press) 10:207–217

    CAS  Google Scholar 

  • Tanida I, Ueno T, Kominami E (2004) LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol 36:2503–2518

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanwar V, Sachdeva J, Kishore K, Mittal R, Nag TC, Ray R, Kumari S, Arya DS (2010) Dose-dependent actions of curcumin in experimentally induced myocardial necrosis: a biochemical, histopathological, and electron microscopic evidence. Cell Biochem Funct 28:74–82

    CAS  PubMed  Google Scholar 

  • Veeraraghavan J, Natarajan M, Herman TS, Aravindan N (2010) Curcumin altered p53-response genes regulate radiosensitivity in p53-mutant ewings sarcoma cells. Anticancer Res 4016:4007–4015

    Google Scholar 

  • Venkatesan N (1998) Curcumin attenuation of acute adriamycin myocardial toxicity in rats. Br J Pharmacol 124:425–427

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Yu H, Wickliffe JK (2011) Limitation of the MTT and XTT assays for measuring cell viability due to superoxide formation induced by nano-scale TiO2. Toxicol Vitro 25:2147–2151

    CAS  Google Scholar 

  • Watkins SJ, Borthwick GM, Arthure HM (2011) The H9C2 cell line and primary neonatal cardiomyocyte cells show similar hypertrophic responses in vitro. Vitro Cell Dev Biol Animal 47:125–131

    CAS  Google Scholar 

  • Witkin JM, Li X (2013) Curcumin, an active constituent of the ancient medicinal herb Curcuma longa l.: some uses and the establishment and biological basis of medical efficacy. CNS Neurol Disord Drug Targets 12:487–497

    CAS  PubMed  Google Scholar 

  • Wongcharoen W, Phrommintikul A (2009) The protective role of curcumin in cardiovascular diseases. Int J Cardiol 133:145–151

    PubMed  Google Scholar 

  • Würstle ML, Laussmann MA, Rehm M (2012) The central role of initiator caspase-9 in apoptosis signal transduction and the regulation of its activation and activity on the apoptosome. Exp Cell Res 318:1213–1220

    PubMed  Google Scholar 

  • Yamaguchi O (2019) Autophagy in the heart. Circ J 83:697–704

    CAS  PubMed  Google Scholar 

  • Yang X, Jiang H, Shi Y (2017a) Upregulation of heme oxygenase-1 expression by curcumin conferring protection from hydrogen peroxide-induced apoptosis in H9c2 cardiomyoblasts. Cell Biosci 7:20

    PubMed  PubMed Central  Google Scholar 

  • Yang C, Ma X, Wang Z, Zeng X, Hu Z, Ye Z, Shen G (2017b) Curcumin induces apoptosis and protective autophagy in castration-resistant prostate cancer cells through iron chelation. Drug Des Devel Ther 11:431–439

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yokoyama T, Miyazawa K, Naito M, Toyotake J, Tauchi T, Itoh M, Yuo A, Hayashi Y, Georgescu MM, Kondo Y, Kondo S, Ohyashiki K (2008) Vitamin K2 induces autophagy and apoptosis simultaneously in leukemia cells. Autophagy 4:629–640

    CAS  PubMed  Google Scholar 

  • Zhang H, Xu W, Li B, Zhang K, Wu Y, Xu H, Wang J, Zhang J, Fan R, Wei J (2015) Curcumin promotes cell cycle arrest and inhibits survival of human renal cancer cells by negative modulation of the PI3K/AKT signaling pathway. Cell Biochem Biophys 73:681–686

    CAS  PubMed  Google Scholar 

  • Zhang Y, Chen P, Hong H, Wang L, Zhou Y, Lang Y (2017) JNK pathway mediates curcumin-induced apoptosis and autophagy in osteosarcoma MG63 cells. Exp Ther Med 14:593–599

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Bu S (2017) Curcumin induces autophagy, apoptosis, and cell cycle arrest in human pancreatic cancer cells. Evid Based Complement Alternat Med 2017:1–13

    Google Scholar 

  • Zikaki K, Aggeli I, Gaitanaki K, Beis I (2014) Curcumin induces the apoptotic intrinsic pathway via upregulation of reactive oxygen species and jnks in h9c2 cardiac myoblasts. Apoptosis 19:958–974

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank CONACyT for its funding. Zaira Colin-Val was supported by doctoral fellowship number 570169 at Universidad Autónoma Metropolitana-Iztapalapa, Mexico.

Author information

Authors and Affiliations

Authors

Contributions

HS-B: investigation, methodology, validation. IZ-Q: investigation, methodology, validation. ZC-V: writing–original draft, investigation, software, methodology. RL-M: conceptualization, validation, visualization, resources, funding acquisition, project administration, supervision, writing—review and editing. SR-E: methodology, supervision, writing—review and editing. DXR-C: methodology.

Corresponding author

Correspondence to Rebeca López-Marure.

Ethics declarations

Conflict of interest

None declared.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zepeda-Quiróz, I., Sánchez-Barrera, H., Colín-Val, Z. et al. Curcumin promotes oxidative stress, apoptosis and autophagy in H9c2 rat cardiomyoblasts. Mol. Cell. Toxicol. 16, 441–453 (2020). https://doi.org/10.1007/s13273-020-00101-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-020-00101-w

Keywords

Navigation