Skip to main content
Log in

FEL Simulation of New Hard X-ray Undulator Line at PAL-XFEL

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The Pohang Accelerator Laboratory X-ray Free Electron Laser (PAL-XFEL) has been successfully operating as a remarkably-stable XFEL facility in the world. The hard X-ray beamline, however, has only one undulator line (HX1) with a 26-mm undulator period for which the maximum undulator parameter K is 1.87. The lowest photon energy that can be generated from the HX1 with a maximum electron beam energy at PAL-XFEL (10.5 GeV) is about 14.65 keV. When a lower photon energy than that is required by the beamline users, the electron beam energy has to be decreased, which results in a decreased accessible FEL pulse energy. Therefore, a new hard X-ray undulator line (HX2) with a higher undulator parameter K is needed to make full use of the PAL-XFEL performance in the lower photon energies by increasing the resonant electron beam energy. The undulator period of the HX2 is decided as 35 mm by using Ming Xie’s fitting formula to estimate the performance of the HX2. FEL simulations with the GENESIS code are carried out to evaluate the performance of the HX2, including the effect of the post-saturation region. The undulator tapering configuration is optimized by maximizing the FEL intensity for each case. We show that the radiation power at the end of the HX2 can be increased up to 2.5 times higher than that of the HX1 over the entire target photon-energy range of the HX2 (2 ∼ 10 keV) by utilizing an undulator with a longer period and a higher undulator parameter K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Emma et al., Nat. Photonics 4, 641 (2010).

    Article  ADS  Google Scholar 

  2. T. Ishikawa et al., Nat. Photonics 6, 540 (2012).

    Article  ADS  Google Scholar 

  3. H-S. Kang et al., Nat. Photonics 11, 708 (2017).

    Article  ADS  Google Scholar 

  4. M. Altarelli, Nucl. Instrum. Methods Phys. Res. B 269, 2845 (2011).

    Article  ADS  Google Scholar 

  5. C. J. Milne et al., Appl. Sci. 7, 720 (2017).

    Article  Google Scholar 

  6. I. S. Ko et al., Appl. Sci. 7, 479 (2017).

    Article  ADS  Google Scholar 

  7. H-S. Kang et al., J. Synchrotron Radiat. 26, 1127 (2019).

    Article  Google Scholar 

  8. K. H. Kim et al., Science 358, 1589 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  9. S. H. Park et al., Sci. Rep. 9, 16316 (2019).

    Article  ADS  Google Scholar 

  10. J-H. Park et al., Int. J. Mol. Sci. 20, 1943 (2019).

    Article  Google Scholar 

  11. A. S. M. Ismail et al., Phys. Chem. Chem. Phys. 22, 2685 (2020).

    Article  Google Scholar 

  12. Z. Huang and K-J. Kim, Phys. Rev. ST Accel. Beams 10, 034801 (2007).

    Article  ADS  Google Scholar 

  13. M. Xie, in Proceedings of the 1995 Particle Accelerator Conference (Dallas, USA, 1995), p. 183.

  14. M. Xie, Nucl. Instrum. Methods Phys. Res. A 445, 59 (2000).

    Article  ADS  Google Scholar 

  15. S. Reiche, Nucl. Instrum. Methods Phys. Res. A 429, 243 (1999).

    Article  ADS  Google Scholar 

  16. N. M. Kroll, P. L. Morton and M. N. Rosenbluth, IEEE J. Quantum Electron. 17, 1436 (1981).

    Article  ADS  Google Scholar 

  17. Y. Jiao et al., Phys. Rev. ST Accel. Beams 15, 050704 (2012).

    Article  ADS  Google Scholar 

  18. A. Mak, F. Curbis and S. Werin, Phys. Rev. ST Accel. Beams 18, 040702 (2015).

    Article  ADS  Google Scholar 

  19. D-E. Kim et al., J. Korean Phys. Soc. 71, 744 (2017).

    Article  ADS  Google Scholar 

  20. C-K. Min et al., J. Synchrotron Radiat. 26, 1101 (2019).

    Article  Google Scholar 

  21. Y. W. Parc, C. H. Shim and D. E. Kim, Appl. Sci. 8, 1588 (2018).

    Article  Google Scholar 

  22. H-S. Kang and I. S. Ko, Nat. Photonics 14, 7 (2020).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No. NRF-2019R1I1A1A01041573).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi Hyun Shim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shim, C.H., Kang, HS. FEL Simulation of New Hard X-ray Undulator Line at PAL-XFEL. J. Korean Phys. Soc. 77, 429–437 (2020). https://doi.org/10.3938/jkps.77.429

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.77.429

Keywords

Navigation