Skip to main content
Log in

Zr-89 Labeled PAMAM Dendrimers 5G without a Chelator for a Cancer Diagnostic Agent

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Dendrimer nanoparticles (DNPs), which have been studied extensively as drug delivery systems, can be synthesized easily with zirconium without chelators. A UV/Vis spectrophotometer and a Dynamic Light Scattering (DLS) analysis were used to confirm the synthesis and the particle size of the composite. Compound B synthesized using a chelator compound was found to be more complex than compound A, and natZr was found to bind at a low yield through Scanning Electron Microscopy-Energy Dispersive X-ray Spectrometer (SEM-EDS) and Inductively Coupled Plasma-Mass Spectrometer (ICP-MS). In PBS (1×), The binding was confirmed to be strong and stable at 99% stability or more. The stability to human serum was very good with a value of about 98%. The stability of the bound 89 Zr was confirmed to be stable for 160 minutes through the evaluation of serum stability. Using CT-26 and MDA-MB-231, We also were able to confirm the difference in the cell uptake of 89Zr-DNPs. After 24 hours, a high cell uptake of close to 40% was observed. Positron Emission Tomography (PET) images were observed, it was confirmed that no accumulation of 89 Zr-DNPs in the bones and its stability in the body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. C. Farokhzad and R. Langer, ACS Nano 3, 16 (2009).

    Article  Google Scholar 

  2. M. Ferrari, Cancer Nanotechnol. 5, 161 (2005).

    Google Scholar 

  3. R. Langer, Nature 392, 5 (1998).

    Google Scholar 

  4. R. Gref et al., Science 263, 1600 (1994).

    Article  ADS  Google Scholar 

  5. S. M. Moghimi, A. C. Hunter and J. C. Murray, Pharmacol. Rev. 53, 283 (2001).

    Google Scholar 

  6. I. Brigger, C. Dubernet and P. Couvreur, Adv. Drug Deliv. Rev. 54, 631 (2002).

    Article  Google Scholar 

  7. K. Kim et al., J. Am. Chem.Soc. 128, 3490 (2006).

    Article  Google Scholar 

  8. X. Montet, R. Weissleder and L. Josephson, Bioconjug. Chem. 7, 905 (2006).

    Article  Google Scholar 

  9. N. Nasongkla et al., Nano Lett. 6, 2427 (2006).

    Article  ADS  Google Scholar 

  10. S. K. Murthy, Int. J. Nanomed. 2, 129 (2017).

    Google Scholar 

  11. I. C. Radu et al., Front. Pharmacol. 8, 508 (2017).

    Article  Google Scholar 

  12. D. A. Tomalia, A. M. Naylor and W. A. Goddard III, Angew. Chem. Int. Ed. Engl. 29, 138 (1990).

    Article  Google Scholar 

  13. G. Hay, M. E. Mackay and C. J. Hawker, J. Polym. Sci. B: Polym. Phys. 39, 1766 (2001).

    Article  ADS  Google Scholar 

  14. M. Seiler, Chem. Eng. Technol. 25, 237 (2002).

    Article  Google Scholar 

  15. P. Hodgem, Nature 365, 18 (1993).

    Article  ADS  Google Scholar 

  16. M. J. Turk et al., Arthritis Rheumatol. 46, 1947c (2002).

    Article  Google Scholar 

  17. S. Anderson et al., Nature 290, 457 (1981).

    Article  ADS  Google Scholar 

  18. N. Bertrand et al., Adv. Drug Deliv. Rev. 66, 2 (2014).

    Article  Google Scholar 

  19. F. Danhier, J. Control. Release 244, 108 (2016).

    Article  Google Scholar 

  20. S. Yan et al., Int. J. Mol. Sci. 14, 138 (2014).

    Google Scholar 

  21. A. Zhu, D. M. Marcus, H. K. G. Shu and H. Shim, Radiat. Res. 177, 436 (2012).

    Article  ADS  Google Scholar 

  22. P. Zanzonico, Radiat. Res. 177, 349 (2012).

    Article  ADS  Google Scholar 

  23. I. Kelesidis and M.n I. Travin, J. Nucl. Cardiol. 19, 142 (2012).

    Article  Google Scholar 

  24. K. Ozker, Curr. Pharm. Des. 6, 1123 (2000).

    Article  Google Scholar 

  25. C. Y. Shiue and M. J. Welch, Radiol. Clin. North Am. 42, 1033 (2004).

    Article  Google Scholar 

  26. K. Wechalekar, B. Sharma and G. Cook, Clin. Radiol. 60, 1143 (2005).

    Article  Google Scholar 

  27. C. J. Anderson et al., J. Nucl. Med. 51, 3S (2010).

    Article  Google Scholar 

  28. M. P. Dunphy and J. S. Lewis, J. Nucl. Med. 50, 106S (2009).

    Article  Google Scholar 

  29. C. Xu et al., J. Nanotechnol. 22, 494001(17pp) (2011).

    Article  Google Scholar 

  30. S. S. Gambhir, Nat. Rev. Cancer 2, 683 (2002).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Dongguk University Research Fund of 2020 and by a National Research Foundation Grant funded by the Korean Government (2017R1D1A1B03035589).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Wook Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.H., Kim, G.G., Kim, S.W. et al. Zr-89 Labeled PAMAM Dendrimers 5G without a Chelator for a Cancer Diagnostic Agent. J. Korean Phys. Soc. 77, 409–413 (2020). https://doi.org/10.3938/jkps.77.409

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.77.409

Keywords

Navigation