Skip to main content
Log in

Satellite Retrieved Spatio-temporal Variability of Phytoplankton Size Classes in the Arabian Sea

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

The long-term trend in satellite retrieved phytoplankton size classes (PSC) such as picophytoplankton (PP), nanophytoplankton (NP), and microphytoplankton (MP) was studied in the three zones falling under different ecological provinces in open ocean regions of the Arabian Sea. A regionally tuned three-component “abundance” model was used to compute PSC biomass from Moderate Resolution Imaging Spectroradiometer onboard Aqua (MODISA) satellite data for the period of 17 years (2003 to 2019). The overall trend indicated the highest concentration of all PSC in the northern Arabian Sea (ARAB province) which gradually decreased to the southern region (MONS province). All PSC biomass showed a peak during the winter monsoon period in ARAB province attributed to the recurring algal bloom. The long-term temporal trend showed relatively lower concentration (most of the times < 0.1 mg m−3) of all PSC biomass in MONS in comparison with ARAB. However, the monthly climatology of total phytoplankton biomass exhibited a similar pattern in all the provinces. The temporal distribution of the PSC biomass discerned rank order of MP > PP > NP in ARAB. In contrast, MONS displayed PSC rank order as PP > NP > MP. A sharp decline in the concentration of MP biomass was observed during the onset of summer monsoon period in comparison with other PSC in MONS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agawin, N. S., Duarte, C. M., & Agusti, S. (2000). Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnology and Oceanography, 45(3), 591–600.

    Google Scholar 

  • Amol, P., Bemal, S., Shankar, D., Jain, V., Thushara, V., Vijith, V., et al. (2020). Modulation of chlorophyll concentration by downwelling Rossby waves during the winter monsoon in the southeastern Arabian Sea. Progress in Oceanography, 186, 102365.

    Google Scholar 

  • Baliarsingh, S. K., Lotliker, A. A., Sudheesh, V., Samanta, A., Das, S., & Vijayan, A. K. (2018). Response of phytoplankton community and size classes to green Noctiluca bloom in the northern Arabian Sea. Marine Pollution Bulletin, 129(1), 222–230.

    Google Scholar 

  • Banse, K. (1987). Seasonality of phytoplankton chlorophyll in the central and northern Arabian Sea. Deep Sea Research Part A. Oceanographic Research Papers, 34(5–6), 713–723.

    Google Scholar 

  • Bec, B., Collos, Y., Souchu, P., Vaquer, A., Lautier, J., Fiandrino, A., et al. (2011). Distribution of picophytoplankton and nanophytoplankton along an anthropogenic eutrophication gradient in French Mediterranean coastal lagoons. Aquatic Microbial Ecology, 63(1), 29–45.

    Google Scholar 

  • Brewin, R., Sathyendranath, S., Hirata, T., Lavender, S. J., Barciela, R. M., & Hardman-Mountford, N. J. (2010). A three-component model of phytoplankton size class for the Atlantic Ocean. Ecological Modelling, 221, 1472–1483.

    Google Scholar 

  • Burkill, P. H., Mantoura, R. F. C., & Owens, N. J. P. (1993). Biogeochemical cycling in the northwestern Indian Ocean: A brief overview. Deep Sea Research Part II: Topical Studies in Oceanography, 40(3), 643–649.

    Google Scholar 

  • Chavez, F. P., Buck, K. R., & Barber, R. T. (1990). Phytoplankton taxa in relation to primary production in the equatorial Pacific. Deep Sea Research Part A. Oceanographic Research Papers, 37(11), 1733–1752.

    Google Scholar 

  • Chisholm, S. W. (1992). Phytoplankton size. In P. G. Falkowski, A. D. Woodhead, & K. Vivirito (Eds.), Primary productivity and biogeochemical cycles in the sea (pp. 213–237). Boston: Springer.

    Google Scholar 

  • Detmer, A. E., & Bathmann, U. V. (1997). Distribution patterns of autotrophic pico-and nanoplankton and their relative contribution to algal biomass during spring in the Atlantic sector of the Southern Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 44, 299–320.

    Google Scholar 

  • Dwivedi, R., Priyaja, P., Rafeeq, M., & Sudhakar, M. (2016). MODIS-aqua detects Noctiluca scintillans and hotspots in the central Arabian Sea. Environmental Monitoring and Assessment, 188(1), 50.

    Google Scholar 

  • Dwivedi, R., Rafeeq, M., Smitha, B. R., Padmakumar, K. B., Thomas, L. C., Sanjeevan, V. N., et al. (2015). Species identification of mixed algal bloom in the Northern Arabian Sea using remote sensing techniques. Environmental Monitoring and Assessment, 187(2), 51.

    Google Scholar 

  • El-Sayed, S. Z. (1988). Productivity of the southern ocean: A closer look. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 90(3), 489–498.

    Google Scholar 

  • Falkowski, P. G., Katz, M. E., Knoll, A. H., Quigg, A., Raven, J. A., Schofield, O., et al. (2004). The evolution of modern eukaryotic phytoplankton. Science, 305(5682), 354–360.

    Google Scholar 

  • Field, C. B., Behrenfeld, M. J., Randerson, J. T., & Falkowski, P. (1998). Primary production of the biosphere: integrating terrestrial and oceanic components. Science, 281(5374), 237–240.

    Google Scholar 

  • Fogg, G. E. (1986). Picoplankton. Proceedings of the Royal Society B: Biological Sciences, 228, 1–30.

    Google Scholar 

  • Fu, M., Wang, Z., Li, Y., Li, R., Sun, P., Wei, X., et al. (2009). Phytoplankton biomass size structure and its regulation in the Southern Yellow Sea (China): Seasonal variability. Continental Shelf Research, 29(18), 2178–2194.

    Google Scholar 

  • Geider, R. J., Moore, C. M., & Suggett, D. J. (2014). Ecology of marine phytoplankton. In R. K. Monson (Ed.), Ecology and the environment (pp. 483–531). New York: Springer.

    Google Scholar 

  • Goes, J. I., Tian, H., do Rosario Gomes, H., Anderson, O. R., Al-Hashmi, K., deRada, S., et al. (2020). Ecosystem state change in the Arabian Sea fuelled by the recent loss of snow over the Himalayan-Tibetan plateau region. Scientific Reports, 10, 7422.

    Google Scholar 

  • Gomes, H. D. R., Goes, J. I., Matondkar, S. P., Buskey, E. J., Basu, S., Parab, S., et al. (2014). Massive outbreaks of Noctiluca scintillans blooms in the Arabian Sea due to spread of hypoxia. Nature Communications, 5, 4862.

    Google Scholar 

  • IOCCG. (2009). Partition of the ocean into ecological provinces: role of ocean-colour radiometry. In M. Dowell & T. Platt (Eds.), Reports of the international ocean-colour coordinating group, No 9. Dartmouth Canada: IOCCG.

    Google Scholar 

  • Irwin, A. J., Finkel, Z. V., Schofield, O. M., & Falkowski, P. G. (2006). Scaling-up from nutrient physiology to the size-structure of phytoplankton communities. Journal of Plankton Research, 28(5), 459–471.

    Google Scholar 

  • Kumar, S. P., Madhupratap, M., Kumar, M. D., Gauns, M., Muraleedharan, P. M., Sarma, V. V. S. S., et al. (2000). Physical control of primary productivity on a seasonal scale in central and eastern Arabian Sea. Journal of Earth System Science, 109, 433–441.

    Google Scholar 

  • Kumar, S. P., & Narvekar, J. (2005). Seasonal variability of the mixed layer in the central Arabian Sea and its implication on nutrients and primary productivity. Deep Sea Research Part II: Topical Studies in Oceanography, 52(14–15), 1848–1861.

    Google Scholar 

  • Kumar, S. P., & Prasad, T. G. (1996). Winter cooling in the northern Arabian Sea. Current Science, 71, 834–841.

    Google Scholar 

  • Legendre, L., & Le Fevre, J. (1991). From individual plankton cells to pelagic marine ecosystems and to global biogeochemical cycles. In S. Demers (Ed.), Particle analysis in oceanography (pp. 261–300). Berlin: Springer.

    Google Scholar 

  • Lewis, W. M. (1976). Surface/volume ratio: implications for phytoplankton morphology. Science, 192(4242), 885–887.

    Google Scholar 

  • Longhurst, A. (1995). Seasonal cycles of pelagic production and consumption. Progress in Oceanography, 36, 77–167.

    Google Scholar 

  • Longhurst, A. (1998). Ecological geography of the sea. San Diego: Academic Press.

    Google Scholar 

  • Longhurst, A. (2006). Ecological geography of the sea (2nd ed.). Amsterdam: Elsevier.

    Google Scholar 

  • Lotliker, A. A., Baliarsingh, S. K., Samanta, A., & Varaprasad, V. (2020). Growth and decay of high-biomass algal bloom in the Northern Arabian Sea. Journal of the Indian Society of Remote Sensing, 48, 465–471.

    Google Scholar 

  • Maranon, E., Holligan, P. M., Barciela, R., González, N., Mouriño, B., Pazó, M. J., et al. (2001). Patterns of phytoplankton size structure and productivity in contrasting open-ocean environments. Marine Ecology Progress Series, 216, 43–56.

    Google Scholar 

  • Matondkar, S. G. P., Basu, S., Parab, S. G., Pednekar, S., Dwivedi, R. M., Raman, M., Goes, J. I., & Gomes, H. (2012). The bloom of the dinoflagellate (Noctiluca miliaris) in the North Eastern Arabian Sea: Ship and Satellite study. In: Proceedings of the 11th Biennial Conference of Pan Ocean Remote Sensing Conference (PORSEC). Kochi, Kerala, India. p. 20.

  • Mitbavkar, S., & Anil, A. C. (2011). Tiniest primary producers in the marine environment: An appraisal from the context of waters around India. Current Science, 100(7), 986–988.

    Google Scholar 

  • Roy, R., Pratihary, A., Mangesh, G., & Naqvi, S. W. A. (2006). Spatial variation of phytoplankton pigments along the southwest coast of India. Estuarine, Coastal and Shelf Science, 69(1–2), 189–195.

    Google Scholar 

  • Sahay, A., Ali, S. M., Gupta, A., & Goes, J. I. (2017). Ocean color satellite determinations of phytoplankton size class in the Arabian Sea during the winter monsoon. Remote Sensing of Environment, 198, 286–296.

    Google Scholar 

  • Sathyendranath, S., Cota, G., Stuart, V., Maass, H., & Platt, T. (2001). Remote sensing of phytoplankton pigments: A comparison of empirical and theoretical approaches. International Journal Remote Sensing, 22, 249–273.

    Google Scholar 

  • Varunan, T., & Shanmugam, P. (2015). A model for estimating size-fractioned phytoplankton absorption coefficients in coastal and oceanic waters from satellite data. Remote Sensing of Environment, 158, 235–254.

    Google Scholar 

  • Vaulot, D., Marie, D., Olson, R. J., & Chisholm, S. W. (1995). Growth of Prochlorococcus, a photosynthetic prokaryote, in the equatorial Pacific Ocean. Science, 268(5216), 1480–1482.

    Google Scholar 

  • Vilicic, D., Vučak, Z., Škrivanić, A., & Grzetić, Z. (1989). Phytoplankton blooms in the oligotrophic open South Adriatic waters. Marine Chemistry, 28, 89–107.

    Google Scholar 

Download references

Acknowledgement

Authors are thankful to the authorities of Centurion University of Technology & Management, Bhubaneswar and Director, Indian National Centre for Ocean Information Services (INCOIS), Hyderabad for their support and encouragement. The authors acknowledge NASA-OBPG for making available MODIS-Aqua data on OceanColor Web. The authors are also thankful to the development team of SeaDAS software using which the satellite data was processed. This work is an outcome of International Training Centre for Operational Oceanography (ITCOocean) training course on “Ocean Color Remote Sensing-Data, Processing and Analysis" conducted during November 25–29, 2019. This is INCOIS contribution no. 386.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aneesh Anandrao Lotliker.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barik, K.K., Baliarsingh, S.K., Jena, A.K. et al. Satellite Retrieved Spatio-temporal Variability of Phytoplankton Size Classes in the Arabian Sea. J Indian Soc Remote Sens 48, 1413–1419 (2020). https://doi.org/10.1007/s12524-020-01165-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-020-01165-w

Keywords

Navigation