Skip to main content
Log in

Entire synergistic contribution of Chinese rice ball-like hollow nitride sphere limited assemble of polyaniline for high-performance supercapacitors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Chinese rice ball-like hollow nitride spheres with a high specific surface area and excellent conductivity have been successfully fabricated via a hydrothermal method. Polyaniline is assembled onto the surface of these nitride spheres. Benefiting from the synergistic effect of the hollow structure, high conductivity, abundant active sites, sturdy microstructure, and additional pseudocapacitance provided by the polyaniline, the prepared CRBHNS-PANI electrode presents ideal electrochemical properties and good cycling stability for supercapacitors according to electrochemical tests. The nanocomposite exhibits a high specific capacitance of 530.8 F g−1 at a current density of 0.5 A g−1 and excellent rate capability (retains 80.4% even at a current density of 5 A g−1). Moreover, the material also has good cycling stability, with 87.4% performance retention after 1000 cycles at a current density of 5 A g−1. This study demonstrates that the performance of PANI-based supercapacitors can be greatly enhanced by limited assembly around novel transition metal nitrides with a unique microscopic morphology and structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Christinelli WA, Gonçalves R, Pereira EC (2016) A new generation of electrochemical supercapacitors based on layer-by-layer polymer films. J Power Sources 303:73–80

    CAS  Google Scholar 

  2. Dai Z, Ren P-G, Jin Y-L, Zhang H, Ren F, Zhang Q (2019) Nitrogen-sulphur Co-doped graphenes modified electrospun lignin/polyacrylonitrile-based carbon nanofiber as high performance supercapacitor. J Power Sources 437:226937

    CAS  Google Scholar 

  3. Li Q, Li Y, Zhao J, Zhao S, Zhou J, Chen C, Tao K, Liu R, Han L (2019) Ultrathin nanosheet-assembled hollow microplate CoMoO4 array derived from metal-organic framework for supercapacitor with ultrahigh areal capacitance. J Power Sources 430:51–59

    CAS  Google Scholar 

  4. Kötz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45(15-16):2483–2498

    Google Scholar 

  5. Senthilkumar K, Jeong S, Lah MS, Sohn K-S, Pyo M (2016) Potentiostatic activation of as-made graphene electrodes for high-rate performance in supercapacitors. J Power Sources 329:558–566

    CAS  Google Scholar 

  6. Zhang H, Zhang L, Chen J, Su H, Liu F, Yang W (2016) One-step synthesis of hierarchically porous carbons for high-performance electric double layer supercapacitors. J Power Sources 315:120–126

    CAS  Google Scholar 

  7. Raza W, Ali F, Raza N, Luo Y, Kim K-H, Yang J, Kumar S, Mehmood A, Kwon EE (2018) Recent advancements in supercapacitor technology. Nano Energy 52:441–473

    CAS  Google Scholar 

  8. Wang YL, Wei XQ, Li MB, Hou PY, Xu XJ (2018) Temperature dependence of Ni3S2 nanostructures with high electrochemical performance. Appl Surf Sci 436:42–49

    CAS  Google Scholar 

  9. Yu J, Zhou J, Yao P, Huang J, Sun W, Zhu C, Xu J (2019) A stretchable high performance all-in-one fiber supercapacitor. J Power Sources 440:227150

    CAS  Google Scholar 

  10. Yang S, Li Y, Sun J, Cao B (2019) Laser induced oxygen-deficient TiO2/graphene hybrid for high-performance supercapacitor. J Power Sources 431:220–225

    CAS  Google Scholar 

  11. Mohd Abdah MAA, Azman NHN, Kulandaivalu S, Sulaiman Y (2020) Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors. Mater Des 186:108199

    Google Scholar 

  12. Yin B-S, Zhang S-W, Ke K, Wang Z-B (2019) Advanced deformable all-in-one hydrogel supercapacitor based on conducting polymer: toward integrated mechanical and capacitive performance. J Alloys Compd 805:1044–1051

    CAS  Google Scholar 

  13. Stojanovska E, Kilic A (2019) Carbon nanofibers as thick electrodes for aqueous supercapacitors. J Energy Storage 26:100981

    Google Scholar 

  14. Zou Z, Jiang C (2020) Hierarchical porous carbons derived from leftover rice for high performance supercapacitors. J Alloys Compd 815:152280

    CAS  Google Scholar 

  15. Liu P, Yan J, Guang Z, Huang Y, Li X, Huang W (2019) Recent advancements of polyaniline-based nanocomposites for supercapacitors. J Power Sources 424:108–130

    CAS  Google Scholar 

  16. Strauss V, Marsh K, Kowal MD, El-Kady M, Kaner RB (2018) A simple route to porous graphene from carbon nanodots for supercapacitor applications. Adv Mater 30(8):1704449

    Google Scholar 

  17. Yang S, Liu Y, Hao Y, Yang X, Goddard WA III, Zhang XL, Cao B (2018) Oxygen-vacancy abundant ultrafine Co3O4/graphene composites for high-rate supercapacitor electrodes. Adv Sci 5(4):1700659

    Google Scholar 

  18. Yang Z, Ma J, Bai B, Qiu A, Losic D, Shi D, Chen M (2019) Free-standing PEDOT/polyaniline conductive polymer hydrogel for flexible solid-state supercapacitors. Electrochim Acta 322:134769

    CAS  Google Scholar 

  19. Meng Q, Cai K, Chen Y, Chen L (2017) Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 36:268–285

    CAS  Google Scholar 

  20. Chen S, Ma L, Zhang K, Kamruzzaman M, Zhi C, Zapien JA (2019) A flexible solid-state zinc ion hybrid supercapacitor based on co-polymer derived hollow carbon spheres. J Mater Chem A 7(13):7784–7790

    CAS  Google Scholar 

  21. Qi K, Hou R, Zaman S, Qiu Y, Xia BY, Duan H (2018) Construction of metal–organic framework/conductive polymer hybrid for all-solid-state fabric supercapacitor. ACS Appl Mater Interfaces 10(21):18021–18028

    CAS  PubMed  Google Scholar 

  22. Guo W, Yu C, Li S, Wang Z, Yu J, Huang H, Qiu J (2019) Strategies and insights towards the intrinsic capacitive properties of MnO2 for supercapacitors: challenges and perspectives. Nano Energy 57:459–472

    CAS  Google Scholar 

  23. Zhang Y, Wang B, Liu F, Cheng J, X-w Z, Zhang L (2016) Full synergistic contribution of electrodeposited three-dimensional NiCo2O4@MnO2 nanosheet networks electrode for asymmetric supercapacitors. Nano Energy 27:627–637

    CAS  Google Scholar 

  24. Pazhamalai P, Krishnamoorthy K, Mariappan VK, Kim S-J (2019) Blue TiO2 nanosheets as a high-performance electrode material for supercapacitors. J Colloid Interface Sci 536:62–70

    CAS  PubMed  Google Scholar 

  25. Ahirrao DJ, Wilson HM, Jha N (2019) TiO2-nanoflowers as flexible electrode for high performance supercapacitor. Appl Surf Sci 491:765–778

    CAS  Google Scholar 

  26. Dong S, Chen X, Gu L, Zhou X, Xu H, Wang H, Liu Z, Han P, Yao J, Wang L, Cui G, Chen L (2011) Facile preparation of mesoporous titanium nitride microspheres for electrochemical energy storage. ACS Appl Mater Interfaces 3(1):93–98

    CAS  PubMed  Google Scholar 

  27. Xie S, Gan M, Ma L, Li Z, Yan J, Yin H, Shen X, Xu F, Zheng J, Zhang J, Hu J (2014) Synthesis of polyaniline-titania nanotube arrays hybrid composite via self-assembling and graft polymerization for supercapacitor application. Electrochim Acta 120:408–415

    CAS  Google Scholar 

  28. Xie Y, Wang D (2016) Supercapacitance performance of polypyrrole/titanium nitride/polyaniline coaxial nanotube hybrid. J Alloys Compd 665:323–332

    CAS  Google Scholar 

  29. Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196(1):1–12

    CAS  Google Scholar 

  30. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41(2):797–828

    CAS  PubMed  Google Scholar 

  31. Shao Z, Li H, Li M, Li C, Qu C, Yang B (2015) Fabrication of polyaniline nanowire/TiO2 nanotube array electrode for supercapacitors. Energy 87:578–585

    CAS  Google Scholar 

  32. Chen S, Liu B, Zhang X, Chen F, Shi H, Hu C, Chen J (2019) Growth of polyaniline on TiO2 tetragonal prism arrays as electrode materials for supercapacitor. Electrochim Acta 300:373–379

    CAS  Google Scholar 

  33. Xie Y, Xia C, Du H, Wang W (2015) Enhanced electrochemical performance of polyaniline/carbon/titanium nitride nanowire array for flexible supercapacitor. J Power Sources 286:561–570

    CAS  Google Scholar 

  34. Lu L, Xie Y (2017) Fabrication and supercapacitor behavior of phosphomolybdic acid/polyaniline/titanium nitride core–shell nanowire array. New J Chem 41(1):335–346

    CAS  Google Scholar 

  35. Xia C, Xie Y, Du H, Wang W (2015) Ternary nanocomposite of polyaniline/manganese dioxide/titanium nitride nanowire array for supercapacitor electrode. J Nanopart Res 17(1):30

  36. Pan JH, Wang XZ, Huang Q, Shen C, Koh ZY, Wang Q, Engel A, Bahnemann DW (2014) Large-scale synthesis of urchin-like mesoporous TiO2 hollow spheres by targeted etching and their photoelectrochemical properties. Adv Funct Mater 24(1):95–104

    CAS  Google Scholar 

  37. Wang B, Liu C, Yin Y, Yu S, Chen K, Liu P, Liang B (2013) Double template assisting synthesized core–shell structured titania/polyaniline nanocomposite and its smart electrorheological response. Compos Sci Technol 86:89–100

    CAS  Google Scholar 

  38. Wang N, Li J, Lv W, Feng J, Yan W (2015) Synthesis of polyaniline/TiO2 composite with excellent adsorption performance on acid red G. RSC Adv 5(27):21132–21141

    CAS  Google Scholar 

  39. Morozov IG, Belousova OV, Belyakov OA, Parkin IP, Sathasivam S, Kuznetcov MV (2016) Titanium nitride room-temperature ferromagnetic nanoparticles. J Alloys Compd 675:266–276

    CAS  Google Scholar 

  40. Tai H, Jiang Y, Xie G, Yu J, Chen X, Ying Z (2008) Influence of polymerization temperature on NH3 response of PANI/TiO2 thin film gas sensor. Sensors Actuators B Chem 129(1):319–326

    CAS  Google Scholar 

  41. Debnath S, Ballav N, Nyoni H, Maity A, Pillay K (2015) Optimization and mechanism elucidation of the catalytic photo-degradation of the dyes Eosin Yellow (EY) and Naphthol blue black (NBB) by a polyaniline-coated titanium dioxide nanocomposite. Appl Catal B Environ 163:330–342

    CAS  Google Scholar 

  42. Shen X, Ma L, Gan M, Li Z, Yan J, Xie S, Yin H, Zhang J (2014) Chemical anchoring of aminobenzoate onto the surface of SnO2 nanoparticles for synthesis of polyaniline/SnO2 composite. Synth Met 196:20–26

    CAS  Google Scholar 

Download references

Funding

This work is supported by the Shanxi Province Applied Basic Research Project (No. 201801D221107), Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No. 2019L0952), and 2019 Lvliang Development Zone’s plan to introduce high-level scientific and technological talents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huihui Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Huihui Wang will handle correspondence at all stages of refereeing and publication, also post-publication

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H. Entire synergistic contribution of Chinese rice ball-like hollow nitride sphere limited assemble of polyaniline for high-performance supercapacitors. J Solid State Electrochem 24, 2325–2332 (2020). https://doi.org/10.1007/s10008-020-04753-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04753-5

Keywords

Navigation