Skip to main content
Log in

V2O5@TiO2 composite as cathode material for lithium-ion storage with excellent performance

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

V2O5 is a promising candidate for cathode active material for Li-ion batteries due to its high theoretical specific capacity but suffers from poor rate capability and cycling stability. To cover these disadvantages, in this work, a low-cost and facile sol-gel method to prepare TiO2-coated V2O5 microspheres is developed for the first time. The prepared V2O5@TiO2 composite could deliver an initial capacity of 297.7 mAh g−1 at a current density of 100 mA g−1 in the potential range of 2.0–4.0 V (vs. Li+/Li). Moreover, the capacity of 247.0 mA h g−1 could be delivered at 1000 mA g−1, and 86% of capacity could be retained after 100 cycles. Even at a large current density of 5000 mA g−1, it could still deliver a high capacity of 197.3 mA h g−1 with a capacity retention of 93.5% after 200 cycles. The outstanding rate and cycling stability of V2O5@TiO2 composite indicate that it holds bright prospect for using as an excellent cathode material for rechargeable lithium batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dunn B, Kamath H, Tarascon J-M (2011) Electrical energy storage for the grid: a battery of choices. Science 334(6058):928–935

    Article  CAS  Google Scholar 

  2. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22(3):587–603

    Article  CAS  Google Scholar 

  3. Goodenough JB, Park K-S (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135(4):1167–1176

    Article  CAS  Google Scholar 

  4. Pan H, Hu Y-S, Chen L (2013) Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ Sci 6(8):2338–2360

    Article  CAS  Google Scholar 

  5. Wang J, Yang G, Chen J, Liu Y, Wang Y, Lao C-Y, Xi K, Yang D, Harris CJ, Yan W, Ding S, Kumar RV (2019) Flexible and high-loading lithium-sulfur batteries enabled by integrated three-in-one fibrous membranes. Adv Energy Mater 9(38)

  6. Schmuch R, Wagner R, Horpel G, Placke T, Winter M (2018) Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat Energy 3(4):267–278

    Article  CAS  Google Scholar 

  7. Wang L, Zhou ZY, Yan X, Hou F, Wen L, Luo WB, Liang J, Dou SX (2018) Engineering of lithium-metal anodes towards a safe and stable battery. Energy Storage Mater 14:22–48

    Article  Google Scholar 

  8. Zubi G, Dufo-Lopez R, Carvalho M, Pasaoglu G (2018) The lithium-ion battery: state of the art and future perspectives. Renew Sustain Energy Rev 89:292–308

    Article  Google Scholar 

  9. Ma M, Wang H, Niu M, Su L, Fan X, Deng J, Zhang Y, Du X (2016) High rate capabilities of HF-etched SiOC anode materials derived from polymer for lithium-ion batteries. RSC Adv 6(49):43316–43321

    Article  CAS  Google Scholar 

  10. Ma M, Wang H, Liang S, Guo S, Zhang Y, Du X (2017) Porous carbon-wrapped cerium oxide hollow spheres synthesized via microwave hydrothermal for long-cycle and high-rate lithium-ion batteries. Electrochim Acta 256:110–118

    Article  CAS  Google Scholar 

  11. Nayak PK, Erickson EM, Schipper F, Penki TR, Munichandraiah N, Adelhelm P, Sclar H, Amalraj F, Markovsky B, Aurbach D (2018) Review on challenges and recent advances in the electrochemical performance of high capacity Li- and Mn-rich cathode materials for Li-ion batteries. Adv Energy Mater 8(8):16

    Article  CAS  Google Scholar 

  12. Wu F, Yushin G (2017) Conversion cathodes for rechargeable lithium and lithium-ion batteries. Energy Environ Sci 10(2):435–459

    Article  CAS  Google Scholar 

  13. Parija A, Liang YF, Andrews JL, De Jesus LR, Prendergast D, Banerjee S (2016) Topochemically de-intercalated phases of V2O5 as cathode materials for multivalent intercalation batteries: a first-principles evaluation. Chem Mater 28(16):5611–5620

    Article  CAS  Google Scholar 

  14. Zhang Y, Lai JY, Gong YD, Hu YM, Liu J, Sun CW, Wang ZL (2016) A safe high-performance all-solid-state lithium-vanadium battery with a freestanding V2O5 nanowire composite paper cathode. ACS Appl Mater Interfaces 8(50):34309–34316

    Article  CAS  Google Scholar 

  15. Zhou XW, He TL, Chen X, Sun L, Liu Z (2016) Influence of TiO2 surface coating on the electrochemical properties of V2O5 micro-particles as a cathode material for lithium ion batteries. RSC Adv 6(59):53925–53932

    Article  CAS  Google Scholar 

  16. Christensen CK, Sorensen DR, Hvam J, Ravnsbaek DB (2019) Structural evolution of disordered LixV2O5 bronzes in V2O5 cathodes for Li-ion batteries. Chem Mater 31(2):512–520

    Article  CAS  Google Scholar 

  17. Jung H, Gerasopoulos K, Talin AA, Ghodssi R (2017) A platform for in situ Raman and stress characterizations of V2O5 cathode. Electrochim Acta 242:227–239

    Article  CAS  Google Scholar 

  18. Shin J, Kim T, Je J, You T-S, Kim J (2014) Facile synthesis and electrochemical performance of carbon-coated V2O5 cathode materials using carboxylic acids as carbon source. Electrochim Acta 139:408–414

    Article  CAS  Google Scholar 

  19. Chen XY, Zhu HL, Chen YC, Shang YY, Cao AY, Hu LB, Rubloff GW (2012) MWCNT/V2O5 core/shell sponge for high areal capacity and power density Li-ion cathodes. ACS Nano 6(9):7948–7955

    Article  CAS  Google Scholar 

  20. Mateti S, Rahman MM, Li LH, Cai QR, Chen Y (2016) In situ prepared V2O5/graphene hybrid as a superior cathode material for lithium-ion batteries. RSC Adv 6(42):35287–35294

    Article  CAS  Google Scholar 

  21. Wang S, Zhang PY, Tan H, Fan XY, Huang K (2019) V2O5 nanosheets anchored on graphitized carbon nanofibers network for free-standing cathode on performance-improved lithium ion batteries. J Power Sources 419:106–111

    Article  CAS  Google Scholar 

  22. Li ZY, Zhang CK, Liu CF, Fu HY, Nan XH, Wang K, Li XY, Ma WD, Lu XM, Cao GZ (2016) Enhanced electrochemical properties of Sn-doped V2O5 as a cathode material for lithium ion batteries. Electrochim Acta 222:1831–1838

    Article  CAS  Google Scholar 

  23. Zeng HM, Liu DY, Zhang YC, See KA, Jun YS, Wu G, Gerbec JA, Ji XL, Stucky GD (2015) Nanostructured Mn-doped V2O5 cathode material fabricated from layered vanadium jarosite. Chem Mater 27(21):7331–7336

    Article  CAS  Google Scholar 

  24. Balasubramanian S, Purushothaman KK (2015) Carbon coated flowery V2O5 nanostructure as novel electrode material for high performance supercapacitors. Electrochim Acta 186:285–291

    Article  CAS  Google Scholar 

  25. Wu LJ, Zhang Y, Li BJ, Wang PX, Fan LS, Zhang NQ, Sun KN (2018) N doped carbon coated V2O5 nanobelt arrays growing on carbon cloth toward enhanced performance cathodes for lithium ion batteries. RSC Adv 8(12):6540–6543

    Article  CAS  Google Scholar 

  26. Zhang XF, Wang KX, Wei X, Chen JS (2011) Carbon-coated V2O5 nanocrystals as high performance cathode material for lithium ion batteries. Chem Mater 23(24):5290–5292

    Article  CAS  Google Scholar 

  27. Zhang HL, Yang J, Xiao QC, Li ZH, Lei GT, Xiao QZ (2014) AlPO4-coated V2O5 nanoplatelet and its electrochemical properties in aqueous electrolyte. Pure Appl Chem 86(5):651–659

    Article  CAS  Google Scholar 

  28. Xu HT, Chen JD, Zhang HJ, Zhang Y, Li WX, Wang Y (2016) Fabricating SiO2-coated V2O5 nanoflake arrays for high-performance lithium-ion batteries with enhanced cycling capability. J Mater Chem A 4(11):4098–4106

    Article  CAS  Google Scholar 

  29. Sun X, Li Q, Mao YB (2015) Understanding the influence of polypyrrole coating over V2O5 nanofibers on electrochemical properties. Electrochim Acta 174:563–573

    Article  CAS  Google Scholar 

  30. Park H, Song T, Han H, Devadoss A, Yuh J, Choi C, Paik U (2012) SnO2 encapsulated TiO2 hollow nanofibers as anode material for lithium ion batteries. Electrochem Commun 22:81–84

    Article  CAS  Google Scholar 

  31. Luo W, Wang Y, Wang L, Jiang W, Chou S-L, Dou SX, Liu HK, Yang J (2016) Silicon/mesoporous carbon/crystalline TiO2 nanoparticles for highly stable lithium storage. ACS Nano 10(11):10524–10532

    Article  CAS  Google Scholar 

  32. Wang C, Han Y, Li S, Chen T, Yu J, Lu Z (2018) Thermal lithiated-TiO2: a robust and electron-conducting protection layer for Li-Si alloy anode. ACS Appl Mater Interfaces 10(15):12750–12758

    Article  CAS  Google Scholar 

  33. Yang J, Wang Y, Li W, Wang L, Fan Y, Jiang W, Luo W, Wang Y, Kong B, Selomulya C, Liu HK, Dou SX, Zhao D (2017) Amorphous TiO2 shells: a vital elastic buffering layer on silicon nanoparticles for high-performance and safe lithium storage. Adv Mater 29(48):1700523(1700521-1700527)

    Article  Google Scholar 

  34. Liu L, Cao F, Yao T, Xu Y, Zhou M, Qu B, Pan B, Wu C, Wei S, Xie Y (2012) New-phase VO2 micro/nanostructures: investigation of phase transformation and magnetic property. New J Chem 36(3):619–625

    Article  Google Scholar 

Download references

Acknowledgments

We thank Ms. Jiamei Liu at the Instrument Analysis Center of Xi’an Jiaotong University for her assistance with XPS measurement.

Funding

This work was financially supported by the National Natural Science Foundation of China (Grant no. 51777152), the Natural Science Foundation of Shaanxi Province (Grant no. 2019JLZ-09), the Fundamental Research Funds for the Central Universities (Granted nos. XJJ2018055 and XJJ2016020), and the Scientific Research Foundation for the Returned Overseas Chinese Scholars.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianfeng Du or Lilong Xiong.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, M., Ji, F., Du, X. et al. V2O5@TiO2 composite as cathode material for lithium-ion storage with excellent performance. J Solid State Electrochem 24, 2419–2425 (2020). https://doi.org/10.1007/s10008-020-04782-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04782-0

Keywords

Navigation