Skip to main content

Advertisement

Log in

Stable performance of an all-solid-state Li metal cell coupled with a high-voltage NCA cathode and ultra-high lithium content poly(ionic liquid)s-based polymer electrolyte

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A poly(ionic liquid)s binder can provide stable performance of high-voltage composite cathodes based on lithium nickel cobalt aluminium oxide (LiNi0.8Co0.15Al0.05O2 or NCA), up to 4.5 V (vs. Li+/Li0) at 50 °C for an electrode with high areal capacity up to 1.6 mAh cm−2. A reversible capacity of more than 150 mAh g−1 in an all-solid-state device using a highly concentrated poly(ionic liquid)s-based composite polymer electrolyte is achieved with high-capacity retention on cycling. Characterization of the composite electrode and polymer electrolyte post-cycling using scanning electron microscopy confirms stable behaviour with only small volume changes evident. This report thus demonstrates these solid polymer electrolytes as promising for high energy density high-voltage all-solid-state lithium (Li) batteries.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lee KY (2019) The effect of active material, conductive additives, and binder in a cathode composite electrode on battery performance. Energies 12(4):658

    Article  CAS  Google Scholar 

  2. Lundgren CA, Xu K, Jow TR, Allen J, Zhang SS (2017) Handbook of electrochemical energy. Springer, Berlin

    Google Scholar 

  3. Sun C, Liu J, Gong Y, Wilkinson DP, Zhang J (2017) Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 33:363–386

    Article  CAS  Google Scholar 

  4. Lv F, Wang Z, Shi L, Zhu J, Edström K, Mindemark J, Yuan S (2019) Challenges and development of composite solid-state electrolytes for high-performance lithium ion batteries. J Power Sources 441:227175

    Article  CAS  Google Scholar 

  5. Mindemark J, Lacey MJ, Bowden T, Brandell D (2018) Beyond PEO—alternative host materials for Li+-conducting solid polymer electrolytes. Prog Polym Sci 81:114–143

    Article  CAS  Google Scholar 

  6. Xu L, Tang S, Cheng Y, Wang K, Liang J, Liu C, Cao Y-C, Wei F, Mai L (2018) Interfaces in solid-state lithium batteries. Joule 2(10):1991–2015

    Article  CAS  Google Scholar 

  7. Meng, Guo H, Niu C, Zhao Y, Xu L, Li Q, Mai L (2017) Advances in structure and property optimizations of battery electrode materials. Joule 1(3):522–547

    Article  CAS  Google Scholar 

  8. Alcántara R, Jaraba M, Lavela P, Tirado JL (2002) Optimizing preparation conditions for 5 V electrode performance, and structural changes in Li1−xNi0.5Mn1.5O4 spinel. Electrochim Acta 47(11):1829–1835

    Article  Google Scholar 

  9. Bresser D, Buchholz D, Moretti A, Varzi A, Passerini S (2018) Alternative binders for sustainable electrochemical energy storage—the transition to aqueous electrode processing and bio-derived polymers. Energy Environ Sci 11(11):3096–3127

    Article  CAS  Google Scholar 

  10. Lee J-S, Sakaushi K, Antonietti M, Yuan J (2015) Poly(ionic liquid) binders as Li+ conducting mediators for enhanced electrochemical performance. RSC Adv 5(104):85517–85522

    Article  CAS  Google Scholar 

  11. Wang R, Feng L, Yang W, Zhang Y, Zhang Y, Bai W, Liu B, Zhang W, Chuan Y, Zheng Z, Guan H (2017) Effect of different binders on the electrochemical performance of metal oxide anode for lithium-ion batteries. Nanoscale Res Lett 12(1):575

    Article  Google Scholar 

  12. Pappenfus TM, Henderson WA, Owens BB, Mann KR, Smyrl WH (2004) Complexes of lithium imide salts with tetraglyme and their polyelectrolyte composite materials. J Electrochem Soc 151(2):A209–A215

    Article  CAS  Google Scholar 

  13. Wang X, Chen F, Girard GMA, Zhu H, MacFarlane DR, Mecerreyes D, Armand M, Howlett PC, Forsyth M (2019) Poly(ionic liquid)s-in-salt electrolytes with co-coordination-assisted lithium-ion transport for safe batteries. Joule 3(11):2687–2702

    Article  CAS  Google Scholar 

  14. Girard GMA, Wang X, Yunis R, MacFarlane DR, Bhattacharyya AJ, Forsyth M, Howlett PC (2019) Sustainable, dendrite free lithium-metal electrode cycling achieved with polymer composite electrolytes based on a poly(ionic liquid) host. Batteries Supercaps 2(3):229–239

    Article  CAS  Google Scholar 

  15. Wang X, Girard GMA, Zhu H, Yunis R, MacFarlane DR, Mecerreyes D, Bhattacharyya AJ, Howlett PC, Forsyth M (2019) Poly(ionic liquid)s/electrospun nanofiber composite polymer electrolytes for high energy density and safe Li metal batteries. ACS Appl Energy Mater 2(9):6237–6245

    Article  CAS  Google Scholar 

  16. Wang X, Zhu H, Girard GMA, Yunis R, MacFarlane DR, Mecerreyes D, Bhattacharyya AJ, Howlett PC, Forsyth M (2017) Preparation and characterization of gel polymer electrolytes using poly(ionic liquids) and high lithium salt concentration ionic liquids. J Mater Chem A 5(45):23844–23852

    Article  CAS  Google Scholar 

  17. Bao J, Shi G, Tao C, Wang C, Zhu C, Cheng L, Qian G, Chen C (2018) Polycarbonate-based polyurethane as a polymer electrolyte matrix for all-solid-state lithium batteries. J Power Sources 389:84–92

    Article  CAS  Google Scholar 

  18. Mindemark J, Sun B, Törmä E, Brandell D (2015) High-performance solid polymer electrolytes for lithium batteries operational at ambient temperature. J Power Sources 298:166–170

    Article  CAS  Google Scholar 

  19. Sun B, Mindemark J, Edström K, Brandell D (2014) Polycarbonate-based solid polymer electrolytes for Li-ion batteries. Solid State Ionics 262:738–742

    Article  CAS  Google Scholar 

  20. Xu J, Lin F, Doeff MM, Tong W (2017) A review of Ni-based layered oxides for rechargeable Li-ion batteries. J Mater Chem A 5(3):874–901

    Article  CAS  Google Scholar 

  21. Liu W, Oh P, Liu X, Lee M-J, Cho W, Chae S, Kim Y, Cho J (2015) Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew Chem Int Ed 54(15):4440–4457

    Article  CAS  Google Scholar 

  22. Chen S, Niu C, Lee H, Li Q, Yu L, Xu W, Zhang J-G, Dufek EJ, Whittingham MS, Meng S, Xiao J, Liu J (2019) Critical parameters for evaluating coin cells and pouch cells of rechargeable Li-metal batteries. Joule 3(4):1094–1105

    Article  CAS  Google Scholar 

  23. Chou S-L, Pan Y, Wang J-Z, Liu H-K, Dou S-X (2014) Small things make a big difference: binder effects on the performance of Li and Na batteries. Phys Chem Chem Phys 16(38):20347–20359

    Article  CAS  Google Scholar 

  24. Yuan H, Huang J-Q, Peng H-J, Titirici M-M, Xiang R, Chen R, Liu Q, Zhang Q (2018) A review of functional binders in Lithium–sulfur batteries. Adv Energy Mater 8(31):1802107

    Article  Google Scholar 

  25. Seki S, Tabata S-I, Matsui S, Watanabe M (2004) Effect of binder polymer structures used in composite cathodes on interfacial charge transfer processes in lithium polymer batteries. Electrochim Acta 50(2):379–383

    Article  CAS  Google Scholar 

  26. Aldalur I, Zhang H, Piszcz M, Oteo U, Rodriguez-Martinez LM, Shanmukaraj D, Rojo T, Armand M (2017) Jeffamine® based polymers as highly conductive polymer electrolytes and cathode binder materials for battery application. J Power Sources 347:37–46

    Article  CAS  Google Scholar 

  27. Kimura K, Yajima M, Tominaga Y (2016) A highly-concentrated poly(ethylene carbonate)-based electrolyte for all-solid-state Li battery working at room temperature. Electrochem Commun 66:46–48

    Article  CAS  Google Scholar 

  28. Wang X, Kerr R, Chen F, Goujon N, Pringle JM, Mecerreyes D, Forsyth M, Howlett PC (2020) Toward high-energy-density lithium metal batteries: opportunities and challenges for solid organic electrolytes. Adv Mater 32(18):1905219

    Article  CAS  Google Scholar 

  29. Liu L, Chu L, Jiang B, Li M (2019) Li1.4Al0.4Ti1.6(PO4)3 nanoparticle-reinforced solid polymer electrolytes for all-solid-state lithium batteries. Solid State Ionics 331:89–95

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Prof Maria Forsyth thanks the Australian Research Council for Australian Laureate Fellowship program. The authors also thank the Battery Technology Research and Innovation Hub (BatTRI-Hub) at Deakin University for their battery prototyping facilities.

Funding

The authors received financial support from the Australia-India Strategic Research Fund (AISRF, grant agreement no. 48515).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoen Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1. Poly(ionic liquid)s binder is used in high-voltage NCA-based electrodes.

2. All-solid-state Li metal batteries with high loading active material (~ 8.0 mg cm−2) are demonstrated.

3. Stable cycling enabled by poly(ionic liquid)s-based electrolytes with ultra-high lithium salt content.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girard, G.M.A., Wang, X., Yunis, R. et al. Stable performance of an all-solid-state Li metal cell coupled with a high-voltage NCA cathode and ultra-high lithium content poly(ionic liquid)s-based polymer electrolyte. J Solid State Electrochem 24, 2479–2485 (2020). https://doi.org/10.1007/s10008-020-04775-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04775-z

Keywords

Navigation