Skip to main content
Log in

Spectroelectrogravimetry of the electrical conductivity activation in poly(o-toluidine) films

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The study of the first stages of the transformation of conducting films from the insulating to the conducting form by oxidation is essential to understand the electrical conductivity activation of these kinds of films. This work examines this process induced by cyclic voltammetry in poly(o-toluidine) (POT) films synthesized in H2SO4 solution. In situ electrochemical quartz crystal microbalance (EQCM) and vis-NIR spectroscopy provide singular information complemented with the global response of current. We propose an electrochemical mechanism for the POT electrical conductivity activation by correlation of mass and spectroscopic data. On the one hand, anions are inserted during the formation of conducting polarons (PC), which have a spectral signal at 840 nm. On the other hand, protons are expulsed when the isolated polarons (P*) detected at 420 nm are oxidized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mortimer RJ, Dyer AL, Reynolds JR (2006) Electrochromic organic and polymeric materials for display applications. Displays 27(1):2–18

    CAS  Google Scholar 

  2. Ashley S (2003) Artificial muscles. Sci Am 289(4):52–59

    CAS  PubMed  Google Scholar 

  3. Edman L (2005) Bringing light to solid-state electrolytes: the polymer light-emitting electrochemical cell. Electrochim Acta 50(19):3878–3885

    CAS  Google Scholar 

  4. Moore CM, Minteer SD, Martin RS (2005) Microchip-based ethanol/oxygen biofuel cell. Lab Chip 5(2):218–225

    CAS  PubMed  Google Scholar 

  5. Inzelt G (2017) Recent advances in the field of conducting polymers. J Solid State Electrochem 21(7):1965–1975

    CAS  Google Scholar 

  6. Wolfart F, Hryniewicz BM, Goes MS, Correa CM, Torresi R, Minadeo MAOS, Cordoba de Torresi SI, Oliveira RD, Marchesi LF, Vidotti M (2017) Conducting polymers revisited: applications in energy, electrochromism and molecular recognition. J Solid State Electrochem 21(9):2489–2515

    CAS  Google Scholar 

  7. Tóth PS, Janáky C, Berkesi O, Tamm T, Visy C (2012) On the unexpected cation exchange behavior, caused by covalent bond formation between PEDOT and Cl ions: extending the conception for the polymer–dopant interactions. J Phys Chem B 116(18):5491–5500

    PubMed  Google Scholar 

  8. Tóth PS, Endrődi B, Janáky C, Visy C (2015) Development of polymer–dopant interactions during electropolymerization, a key factor in determining the redox behaviour of conducting polymers. J Solid State Electrochem 19(9):2891–2896

    Google Scholar 

  9. Kaneto K, Hashimoto H, Tominaga K, Takashima W (2011) Shape retention in polyaniline artificial muscles. Jpn J Appl Phys 50(2):021603

    Google Scholar 

  10. Marmisolle WA, Posadas D, Florit MI (2008) Electrochemical aging of poly(aniline) and its ring substituted derivatives. J Phys Chem B 112(35):10800–10805

    CAS  PubMed  Google Scholar 

  11. Marmisollé WA, Florit MI, Posadas D (2011) Electrochemically induced ageing of polyaniline monitored by the changes in its voltammetric response. J Electroanal Chem 660(1):26–30

    Google Scholar 

  12. Qazi TH, Rai R, Boccaccini AR (2014) Tissue engineering of electrically responsive tissues using polyaniline based polymers: a review. Biomaterials 35(33):9068–9086

    CAS  PubMed  Google Scholar 

  13. Lai J, Yi Y, Zhu P, Shen J, Wu K, Zhang L, Liu J (2016) Polyaniline-based glucose biosensor: a review. J Electroanal Chem 782:138–153

    CAS  Google Scholar 

  14. Syugaev AV, Maratkanova AN, Shakov AA, Lyalina NV, Smirnov DA (2018) Polyaniline films electrodeposited on iron from oxalic acid solution: spectroscopic analysis of chemical structure. J Solid State Electrochem 22(10):3171–3182

    CAS  Google Scholar 

  15. Scotto J, Marmisollé WA, Posadas D (2019) About the capacitive currents in conducting polymers: the case of polyaniline. J Solid State Electrochem 23(7):1947–1965

    CAS  Google Scholar 

  16. Ćirić-Marjanović G (2013) Recent advances in polyaniline research: polymerization mechanisms, structural aspects, properties and applications. Synth Met 177:1–47

    Google Scholar 

  17. Dunsch L (2011) Recent advances in in situ multi-spectroelectrochemistry. J Solid State Electrochem 15(7-8):1631–1646

    CAS  Google Scholar 

  18. Xia Y, Wiesinger JM, MacDiarmid AG, Epstein AJ (1995) Camphorsulfonic acid fully doped polyaniline emeraldine salt: conformations in different solvents studied by an ultraviolet/visible/near-infrared spectroscopic method. Chem Mater 7(3):443–445

    CAS  Google Scholar 

  19. MacDiarmid AG, Epstein AJ (1995) Secondary doping in polyaniline. Synth Met 69(1-3):85–92

    CAS  Google Scholar 

  20. Nekrasov AA, Ivanov VF, Vannikov AV (2000) Analysis of the structure of polyaniline absorption spectra based on spectroelectrochemical data. J Electroanal Chem 482(1):11–17

    CAS  Google Scholar 

  21. Nekrasov AA, Ivanov VF, Vannikov AV (2001) Effect of pH on the structure of absorption spectra of highly protonated polyaniline analyzed by the Alentsev-Fock method. Electrochim Acta 46(26-27):4051–4056

    CAS  Google Scholar 

  22. Nekrasov AA, Ivanov VF, Gribkova OL, Vannikov AV (2005) Voltabsorptometric study of “structural memory” effects in polyaniline. Electrochimica Acta 50:1605–1613.

  23. Agrisuelas J, Gabrielli C, García-Jareño JJ, Perrot H, Vicente F (2012) Kinetic and mechanistic aspects of a poly(o-toluidine)-modified gold electrode. 1. Simultaneous cyclic spectroelectrochemistry and electrogravimetry studies in H2SO4 solutions. J Phys Chem C 116(29):15620–15629

  24. Agrisuelas J, Gabrielli C, García-Jareño JJ, Perrot H, Vicente F (2012) Kinetic and mechanistic aspects of a poly(o-toluidine)-modified gold electrode. 2. Alternating current electrogravimetry study in H2SO4 solutions. J Phys Chem C 116(29):15630–15640

    CAS  Google Scholar 

  25. Henderson MJ, Hillman AR, Vieil E (1999) Ion and solvent transfer discrimination at a poly(o-toluidine) film exposed to HClO4 by combined electrochemical quartz crystal microbalance (EQCM) and probe beam deflection (PBD). J Phys Chem B 103(42):8899–8907

    CAS  Google Scholar 

  26. J. Henderson M, Robert Hillman A, Vieil E (1998) A combined electrochemical quartz crystal microbalance (EQCM) and probe beam deflection (PBD) study of a poly(o-toluidine) modified electrode in perchloric acid solution. J Electroanal Chem 454(1-2):1–8

    Google Scholar 

  27. Agrisuelas J, Gabrielli C, García-Jareño JJ, Perrot H, Vicente F (2014) Effects of anions size on the redox behavior of poly(o-toluidine) in acid solutions. An in situ vis-NIR cyclic spectroelectrogravimetry study. Electrochim Acta 125:83–93

    CAS  Google Scholar 

  28. Agrisuelas J, Delgado C, Gabrielli C, García-Jareño JJ, Perrot H, Sel O, Vicente F (2015) The role of NH4+ cations on the electrochemistry of Prussian blue studied by electrochemical, mass, and color impedance spectroscopy. J Solid State Electrchem 19(9):2555–2564

    CAS  Google Scholar 

  29. Cuenca A, Agrisuelas J, Garcia-Jareño JJ, Vicente F (2015) Oscillatory changes of the heterogeneous reactive layer detected with the motional resistance during the galvanostatic deposition of copper in sulfuric solution. Langmuir 31(46):12664–12673

    CAS  PubMed  Google Scholar 

  30. Agrisuelas J, García-Jareño JJ, Moreno-Guerrero C, Roig A, Vicente F (2013) Identification of electroactive sites in Prussian yellow films. Electrochim Acta 113:825–833

    CAS  Google Scholar 

  31. Agrisuelas J, Gimenez-Romero D, Garcia-Jareno JJ, Vicente F (2006) Vis/NIR spectroelectrochemical analysis of poly-(Azure A) on ITO electrode. Electrochem Commun 8(4):549–553

    CAS  Google Scholar 

  32. Agrisuelas J, Gabrielli C, Garcia-Jareno JJ, Gimenez-Romero D, Gregori J, Perrot H, Vicente F (2007) Usefulness of F (dm/dQ) function for elucidating the ions role in PB films. J Electrochem Soc 154(6):F134–F140

    CAS  Google Scholar 

  33. Giménez-Romero D, Bueno PR, Gabrielli C, Castaño C, Perrot H, García-Jareño JJ, Vicente F (2006) Mass/charge balance as a tool to estimate dimensional change in polypyrrole-based actuators. Electrochem Commun 8(1):195–199

    Google Scholar 

  34. Agrisuelas J, Gabrielli C, García-Jareño JJ, Perrot H, Vicente F (2014) Effects of anion size on the electrochemical behavior of H2SO4-structured poly(o-toluidine) films. An ac-electrogravimetry study in acid solutions. Electrochim Acta 132:561–573

    CAS  Google Scholar 

  35. Inzelt G (1989) Role of polymeric properties in the electrochemical-behavior of redox polymer-modified electrodes. Electrochim Acta 34(2):83–91

    CAS  Google Scholar 

  36. Kalaji M, Nyholm L, Peter LM (1991) A microelectrode study of the influence of pH and solution composition on the electrochemical behaviour of polyaniline films. J Electroanal Chem Interfacial Electrochem 313(1-2):271–289

    CAS  Google Scholar 

  37. Otero TF, Martinez JG (2013) Structural and biomimetic chemical kinetics: kinetic magnitudes include structural information. Adv Funct Mater 23(4):404–416

    CAS  Google Scholar 

  38. Otero TF, Martinez JG (2014) Structural electrochemistry: conductivities and ionic content from rising reduced polypyrrole films. Adv Funct Mater 24(9):1259–1264

    CAS  Google Scholar 

  39. Aoki K, Cao J, Hoshino Y (1994) Logarithmic relaxation of electrochemical insulating-to-conducting conversion at polyaniline films: interpretation by electric percolation. Electrochim Acta 39(15):2291–2297

    CAS  Google Scholar 

  40. Aoki K, Teragishi Y (1998) A fractal feature of the conducting zone by conversion rates from any redox state into the fully conducting state of polyaniline films. J Electroanal Chem 441(1-2):25–31

    CAS  Google Scholar 

  41. Fraoua K, Delamar M, Andrieux CP (1996) Study of pH effect on the relaxation phenomenon of polyaniline by electrochemistry and XPS. J Electroanal Chem 418(1-2):109–113

    CAS  Google Scholar 

  42. Heinze J, Bilger R, Meerholz K (1988) Electrochemically induced structural-changes in conducting polymers. Phys Chem Chem Phys 92(11):1266–1271

    CAS  Google Scholar 

  43. Odin C, Nechtschein M (1991) Slow relaxation in conducting polymers. Phys Rev Lett 67(9):1114–1117

    CAS  PubMed  Google Scholar 

  44. Feldberg S, Rubinstein I (1988) Unusual quasi-reversibility (uqr) or apparent non-kinetic hysteresis in cyclic voltammetry - an elaboration upon the implications of N-shaped free-energy relationships as explanation. J Electroanal Chem 240(1-2):1–15

    CAS  Google Scholar 

  45. Scotto J, Florit MI, Posadas D (2017) pH dependence of the voltammetric response of Polyaniline. J Electroanal Chem 785:14–19

    CAS  Google Scholar 

  46. Otero TF, Grande H-J, Rodríguez J (1997) Reinterpretation of polypyrrole electrochemistry after consideration of conformational relaxation processes. J Phys Chem B 101(19):3688–3697

    CAS  Google Scholar 

  47. Bilal S, Shah A-HA, Holze R (2009) A correlation of electrochemical and spectroelectrochemical properties of poly(o-toluidine). Electrochim Acta 54(21):4851–4856

    CAS  Google Scholar 

  48. Agrisuelas J, Gabrielli C, García-Jareño JJ, Perrot H, Sel O, Vicente F (2015) Polymer dynamics in thin p-type conducting films investigated by ac-electrogravimetry. Kinetics aspects on anion exclusion, free solvent transfer, and conformational changes in poly(o-toluidine). Electrochim Acta 153:33–43

    CAS  Google Scholar 

  49. Bernard MC, Hugot-Le Goff A (2006) Quantitative characterization of polyaniline films using Raman spectroscopy: I: Polaron lattice and bipolaron. Electrochim Acta 52(2):595–603

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by MINECO-FEDER CTQ2015-71794-R and from Excellence Network E3TECH under project CTQ2017-90659-REDT (MINECO, Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerónimo Agrisuelas.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guillén, E., Ferrer, A., Agrisuelas, J. et al. Spectroelectrogravimetry of the electrical conductivity activation in poly(o-toluidine) films. J Solid State Electrochem 24, 2353–2363 (2020). https://doi.org/10.1007/s10008-020-04754-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04754-4

Keywords

Navigation