Skip to main content
Log in

Improvement of electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode material via Li2.09W0.9Nb0.1O4 Li-ion conductive coating layer

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Recently, niobium tungsten oxide has garnered considerable attention owing to its excellent Li-ion diffusion rate and prominent structural stability during charge–discharge cycles. Here, a cathode material (LiNi0.8Co0.1Mn0.1O2, NCM811) for Li-ion batteries is successfully coated with Li-ion conductive Li2.09W0.9Nb0.1O4 using a simple wet-chemical coating method followed by high-temperature sintering. A physicochemical phase analysis reveals that a 4–5-nm-thick coating with a Li2.09W0.9Nb0.1O4 crystal structure is evenly distributed on the surface of the cathode particles. Among cathodes coated with different amounts of material, the one coated with 0.5 wt% Li2.09W0.9Nb0.1O4 yielded the best overall performance, with a high discharge capacity of 136.8 mAh g−1 at 10 C and long-term cycling stability with a capacity retention of 91.7% after 100 cycles at 1 C. This excellent electrochemical performance can be attributed to the coating’s ability to prevent the impedance from increasing and the Li-ion diffusion coefficient from decaying. In addition, it protects the cathode from side reactions and stabilizes the structure during cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Blomgren GE (2017) The development and future of lithium ion batteries. J Electrochem Soc 164(1):A5019–A5025

    CAS  Google Scholar 

  2. Schmuch R, Wagner R, Horpel G, Placke T, Winter M (2018) Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat Energy 3(4):267–278

    CAS  Google Scholar 

  3. Gan Z, Hu G, Peng Z, Cao Y, Tong H, Du K (2019) Surface modification of LiNi0.8Co0.1Mn0.1O2 by WO3 as a cathode material for LIB. Appl Surf Sci 481:1228–1238

    CAS  Google Scholar 

  4. Ma F, Wu YH, Wei GY, Qiu SF, Qu JK (2019,) Enhanced electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode via wet-chemical coating of MgO. J Solid State Electrochem 23(7): 2213–2224

  5. Wu F, Maier J, Yu Y (2020) Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem Soc Rev 49(5):1569–1614

    PubMed  CAS  Google Scholar 

  6. Hao J, Li X, Song X, Guo Z (2019) Recent progress and perspectives on dual-ion batteries. EnergyChem. 1(1):100004

    Google Scholar 

  7. Myung S-T, Maglia F, Park K-J, Yoon CS, Lamp P, Kim S-J, Sun Y-K (2017) Nickel-rich layered cathode materials for automotive lithium-ion batteries: achievements and perspectives. ACS Energy Lett 2:196–223

    CAS  Google Scholar 

  8. Kasnatscheew J, Evertz M, Streipert B, Wagner R, Nowak S, Laskovic IC, Winter M (2017) Improving cycle life of layered lithium transition metal oxide (LiMO2) based positive electrodes for Li ion batteries by smart selection of the electrochemical charge conditions. J Power Sources 359:458–467

    CAS  Google Scholar 

  9. Wang G, Xiong X, Zou P, Fu X, Lin Z, Li Y, Liu Y, Yang C, Liu M (2019) Lithiated zinc oxide nanorod arrays on copper current collectors for robust Li metal anodes. Chem Eng J 378:122243

    CAS  Google Scholar 

  10. Liu H, Cheng X-B, Jin Z, Zhang R, Wang G, Chen L-Q, Liu Q-B, Huang J-Q, Zhang Q (2019) Recent advances in understanding dendrite growth on alkali metal anodes. EnergyChem. 1(1):100003

    Google Scholar 

  11. Guo X, Chen C, Zhang Y, Xu Y, Pang H (2019) The application of transition metal cobaltites in electrochemistry. Energy Storage Mater 23:439–465

    Google Scholar 

  12. Noh H-J, Youn S, Yoon CS, Sun Y-K (2013) Comparison of the structural and electrochemical properties of layered Li NixCoyMnz O2 (x=1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J Power Sources 233:121–130

    CAS  Google Scholar 

  13. Abdellahi A, Urban A, Dacek S, Ceder G (2016) Understanding the effect of cation disorder on the voltage profile of lithium transition-metal oxides. Chem Mater 28(15):5373–5383

    CAS  Google Scholar 

  14. Boerner M, Horsthemke F, Kollmer F, Haseloff S, Friesen A, Winter M, Schappacher FM (2016) Degradation effects on the surface of commercial LiNi0.5Co0.2Mn0.3O2 electrodes. J Power Sources 335:45–55

    CAS  Google Scholar 

  15. Fu Z, Hu J, Hu W, Yang S, Luo Y (2018) Quantitative analysis of Ni2+/Ni3+ in Li[NixMnyCoz]O2 cathode materials: non-linear least-squares fitting of XPS spectra. Appl Surf Sci 441:1048–1056

    CAS  Google Scholar 

  16. Gao S, Zhan X, Cheng Y-T (2019) Structural, electrochemical and Li-ion transport properties of Zr-modified LiNi0.8Co0.1Mn0.1O2 positive electrode materials for Li-ion batteries. J Power Sources 410–411:45–52

    Google Scholar 

  17. Liu X, Wang S, Wang L, Wang K, Wu X, Zhou P, Miao Z, Zhou J, Zhao Y, Zhuo S (2019) Stabilizing the high-voltage cycle performance of LiNi0.8Co0.1Mn0.1O2 cathode material by Mg doping. J Power Sources 438:227017

  18. Ming L, Zhang B, Cao Y, Zhang J-F, Wang C-H, Wang X-W, Li H (2018) Effect of Nb and F co-doping on Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for high-performance lithium-ion batteries. Front Chem 6:76

  19. Zhao L, Wu Q, Wu J (2018) Improving rate performance of cathode material Li1.2Mn0.54Co0.13Ni0.13O2 via niobium doping. J Solid State Electrochem 22:2141–2148

    CAS  Google Scholar 

  20. Zhang M, Zhao H, Tan M, Liu J, Hu Y, Liu S, Shu X, Li H, Ran Q, Cai J, Liu X (2019) Yttrium modified Ni-rich LiNi0.8Co0.1Mn0.1O2 with enhanced electrochemical performance as high energy density cathode material at 4.5 V high voltage. J Alloys Compd 774:82–92

    CAS  Google Scholar 

  21. Guo X, Wang S, Yang B, Xu Y, Liu Y, Pang H (2020) Porous pyrrhotite Fe7S8 nanowire/SiOx/nitrogen-doped carbon matrix for high-performance Li-ion-battery anodes. J Colloid Interface Sci 561:801–807

    PubMed  CAS  Google Scholar 

  22. Dai S, Yan G, Wang L, Luo L, Li Y, Yang Y, Liu H, Liu Y, Yuan M (2019) Enhanced electrochemical performance and thermal properties of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material via CaF2 coating. J Electroanal Chem 847:113197

  23. Dai S, Yuan M, Wang L, Luo L, Chen Q, Xie T, Li Y, Yang Y (2019) Ultrathin-Y2O3-coated LiNi0.8Co0.1Mn0.1O2 as cathode materials for Li-ion batteries: synthesis, performance and reversibility. Ceram Int 45(1):674–680

    CAS  Google Scholar 

  24. Huang Y, Yao X, Hu X, Han Q, Wang S, Ding L-X, Wang H (2019) Surface coating with Li-Ti-O to improve the electrochemical performance of Ni-rich cathode material. Appl Surf Sci 489:913–921

    CAS  Google Scholar 

  25. Li X, Jin L, Song D, Zhang H, Shi X, Wang Z, Zhang L, Zhu L (2020) LiNbO3-coated LiNi0.8Co0.1Mn0.1O2 cathode with high discharge capacity and rate performance for all-solid-state lithium battery. J Energy Chem 40:39–45

    Google Scholar 

  26. Guo X, Zhang Y-Z, Zhang F, Li Q, Anjum DH, Liang H, Liu Y, Liu C, Alshareef HN, Pang H (2019) A novel strategy for the synthesis of highly stable ternary SiOx composites for Li-ion-battery anodes. J Mater Chem A 7(26):15969–15974

    CAS  Google Scholar 

  27. Wang G, Chen C, Chen Y, Kang X, Yang C, Wang F, Liu Y, Xiong X (2020) Self-stabilized and strongly adhesive supramolecular polymer protective layer enables ultrahigh-rate and large-capacity lithium-metal anode. Angew Chem Int Ed Eng 59:2055–2060

    CAS  Google Scholar 

  28. Li L, Chang YL, Xia H, Song BH, Yang JR, Lee KS, Lu L (2014) NH4F surface modification of Li-rich layered cathode materials. Solid State Ionics 264:36–44

    CAS  Google Scholar 

  29. Jan SS, Nurgul S, Shi X, Xia H, Pang H (2014) Improvement of electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode material by graphene nanosheets modification. Electrochim Acta 149:86–93

    CAS  Google Scholar 

  30. Du M, Yang P, He W, Bie S, Zhao H, Yin J, Zou Z, Liu J (2019) Enhanced high-voltage cycling stability of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode coated with Li2O–2B2O3. J Alloys Compd 805:991–998

    CAS  Google Scholar 

  31. Mauger A, Julien C (2014) Surface modifications of electrode materials for lithium-ion batteries: status and trends. Ionics 20:751–787

    CAS  Google Scholar 

  32. Huang Z, Wang Z, Zheng X, Guo H, Li X, Jing Q, Yang Z (2015) Effect of Mg doping on the structural and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials. Electrochim Acta 182:795–802

    CAS  Google Scholar 

  33. Shang G, Tang Y, Lai Y, Wu J, Yang X, Li H, Peng C, Zheng J, Zhang Z (2019) Enhancing structural stability unto 4.5 V of Ni-rich cathodes by tungsten-doping for lithium storage. J Power Sources 423:246–254

    CAS  Google Scholar 

  34. Wu K, Jia G, Shangguan X, Yang G, Zhu Z, Peng Z, Zhuge Q, Li F, Cui X, Liu S (2018) Improving the electrochemical performance of Ni-rich LiNi0.8Co0.1Mn0.1O2 by enlarging the Li layer spacing. Energy Technol 6:1885–1893

    CAS  Google Scholar 

  35. Guan PY, Zhou L, Yu ZL, Sun YD, Liu YJ, Wu FX, Jiang YF, Chu DW (2020) Recent progress of surface coating on cathode materials for high-performance lithium-ion batteries. J Energy Chem 43:220–235

    Google Scholar 

  36. Xiong X, Wang Z, Guo H, Zhang Q, Li X (2013) Enhanced electrochemical properties of lithium-reactive V2O5 coated on the LiNi0.8Co0.1Mn0.1O2 cathode material for lithium ion batteries at 60 degrees C. J Mater Chem A 1(4):1284–1288

    CAS  Google Scholar 

  37. Zheng JM, Li J, Zhang ZR, Guo XJ, Yang Y (2008) The effects of TiO2 coating on the electrochemical performance of Li Li0.2Mn0.54Ni0.13CO0.13 O2 cathode material for lithium-ion battery. Solid State Ionics 179:1794–1799

    CAS  Google Scholar 

  38. Pol VG, Li Y, Dogan F, Secor E, Thackeray MM, Abraham DP (2014) Pulsed sonication for alumina coatings on high-capacity oxides: performance in lithium-ion cells. J Power Sources 258:46–53

    CAS  Google Scholar 

  39. Uchida S, Zettsu N, Hirata K, Kami K, Teshima K (2016) High-voltage capabilities of ultra-thin Nb2O5 nanosheet coated LiNi1/3Co1/3Mn1/3O2 cathodes. RSC Adv 6:67514–67519

    CAS  Google Scholar 

  40. Du K, Huang J, Cao Y, Peng Z, Hu G (2013) Study of effects on LiNi0.8Co0.15Al0.05O2 cathode by LiNi1/3Co1/3Mn1/3O2 coating for lithium ion batteries. J Alloys Compd 574:377–382

    CAS  Google Scholar 

  41. Xu Y-D, Xiang W, Wu Z-G, Xu C-L, Li Y-C, Guo X-D, Lv G-P, Peng X, Zhong B-H (2018) Improving cycling performance and rate capability of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode materials by Li4Ti5O12 coating. Electrochim Acta 268:358–365

    CAS  Google Scholar 

  42. Zhao E, Chen M, Hu Z, Chen D, Yang L, Xiao X (2017) Improved cycle stability of high-capacity Ni-rich LiNi0.8Mn0.lCo0.1O2 at high cut-off voltage by Li2SiO3 coating. J Power Sources 343:345–353

    CAS  Google Scholar 

  43. Ma F, Wu YH, Wei GY, Qiu SF, Qu JK, Qi T (2019) Comparative study of simple and concentration gradient shell coatings with Li1.2Ni0.13Mn0.54Co0.13O2 on LiNi0.8Mn0.1Co0.1O2 cathodes for lithium-ion batteries. Solid State Ionics 341:115034

  44. Tang W, Chen Z, Xiong F, Chen F, Huang C, Gao Q, Wang T, Yang Z, Zhang W (2019) An effective etching-induced coating strategy to shield LiNi0.8Co0.1Mn0.1O2 electrode materials by LiAlO2. J Power Sources 412:246–254

    CAS  Google Scholar 

  45. Lee YS, Shin WK, Kannan AG, Koo SM, Kim DW (2015) Improvement of the cycling performance and thermal stability of lithium-ion cells by double-layer coating of cathode materials with Al2O3 nanoparticles and conductive polymer. ACS Appl Mater Interfaces 7:13944–13951

    PubMed  CAS  Google Scholar 

  46. Ran Q, Zhao H, Hu Y, Shen Q, Liu W, Liu J, Shu X, Zhang M, Liu S, Tan M, Li H, Liu X (2018) Enhanced electrochemical performance of dual-conductive layers coated Ni-rich LiNi0.6Co0.2Mn0.2O2 cathode for Li-ion batteries at high cut-off voltage. Electrochim Acta 289:82–93

    CAS  Google Scholar 

  47. Wu H, Yu G, Pan L, Liu N, McDowell MT, Bao Z, Cui Y (2013) Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat Commun 4:1943

    PubMed  Google Scholar 

  48. Shi Y, Zhang M, Qian D, Meng YS (2016) Ultrathin Al2O3 coatings for improved cycling performance and thermal stability of LiNi0.5Co0.2Mn0.3O2 cathode material. Electrochim Acta 203:154–161

    CAS  Google Scholar 

  49. Cao Z, Li Y, Shi M, Zhu G, Zhang R, Li X, Yue H, Yang S (2017) Improvement of the cycling performance and thermal stability of lithium-ion batteries by coating cathode materials with Al2O3 nano layer. J Electrochem Soc 164(2):A475–A481

    CAS  Google Scholar 

  50. Hildebrand S, Vollmer C, Winter M, Schappacher FM (2017) Al2O3, SiO2 and TiO2 as coatings for safer LiNi0.8Co0.15Al0.05O2 cathodes: electrochemical performance and thermal analysis by accelerating rate calorimetry. J Electrochem Soc 164(9):A2190–A2198

    CAS  Google Scholar 

  51. Figueroa R, Kleinke M, Cruz TGS, Gorenstein A (2006) Influence of the microstructure on the electrochemical performance of thin film WO3 cathode. J Power Sources 162:1351–1356

    CAS  Google Scholar 

  52. Huang J, Liu H, Hu T, Meng YS, Luo J (2018) Enhancing the electrochemical performance of Li-rich layered oxide Li1.13Ni0.3Mn0.57O2 via WO3 doping and accompanying spontaneous surface phase formation. J Power Sources 375:21–28

    CAS  Google Scholar 

  53. Aida T, Tsutsui Y, Kanada S, Okada J, Hayashi K, Komukai T (2017) Ammonium tungstate modified Li-rich Li1+xNi0.35Co0.35Mn0.30O2 to improve rate capability and productivity of lithium-ion batteries. J Solid State Electrochem 21:2047–2054

    CAS  Google Scholar 

  54. Fu J, Mu D, Wu B, Bi J, Cui H, Yang H, Wu H, Wu F (2018) Electrochemical properties of the LiNi0.6Co0.2Mn0.2O2 cathode material modified by lithium tungstate under high voltage. ACS Appl Mater Interfaces 10(23):19704–19711

    PubMed  CAS  Google Scholar 

  55. Griffith KJ, Wiaderek KM, Cibin G, Marbella LE, Grey CP (2018) Niobium tungsten oxides for high-rate lithium-ion energy storage. Nature 559(7715):556–563

    PubMed  CAS  Google Scholar 

  56. Liu S, Xiong L, He C (2014) Long cycle life lithium ion battery with lithium nickel cobalt manganese oxide (NCM) cathode. J Power Sources 261:285–291

    CAS  Google Scholar 

  57. Liu S, Chen X, Zhao J, Su J, Zhang C, Huang T, Wu J, Yu A (2018) Uncovering the role of Nb modification in improving the structure stability and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode charged at higher voltage of 4.5 V. J Power Sources 374:149–157

    CAS  Google Scholar 

  58. Lei Y, Ai J, Yang S, Lai C, Xu Q (2019) Nb-doping in LiNi0.8Co0.1Mn0.1O2 cathode material: effect on the cycling stability and voltage decay at high rates. J Taiwan Inst Chem Eng 97:255–263

    CAS  Google Scholar 

  59. Wu L, Tang X, Rong Z, Chen X, Huang J, Chen T, Fang X, Wang Y, Dang W (2019) Studies on electrochemical reversibility of lithium tungstate coated Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material under high cut-off voltage cycling. Appl Surf Sci 484:21–32

    CAS  Google Scholar 

  60. Zheng Z, Guo X-D, Chou S-L, Hua W-B, Liu H-K, Dou SX, Yang X-S (2016) Uniform Ni-rich LiNi0.6Co0.2Mn0.2O2 porous microspheres: facile designed synthesis and their improved electrochemical performance. Electrochim Acta 191:401–410

    CAS  Google Scholar 

  61. Lundberg RSM (n.d.) Structure of the intermediate phase, Li2.o9Wo.91Nbo.o9O4, in the Li2WO4-Li3NbO4 system. Acta Crystallogr C41:173–177

  62. Yamada H, Hibino M, Kudo T (2001) Lithium insertion to ReO3-type metastable phase in the Nb2O5–WO3 system. Solid State Ionics 140:249–255

Download references

Funding

This work was supported by the Science and Technology Service Network Plan of the Chinese Academy of Sciences (Grant No. KFJ-STS-ZDTP-040), the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (Grant No. QYZDJ-SSW-JSC021), and the Key Research Program of the Chinese Academy of Sciences (Grant No. ZDRW-ZS-2018-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingkui Qu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 9264 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Ma, F., Wei, G. et al. Improvement of electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode material via Li2.09W0.9Nb0.1O4 Li-ion conductive coating layer. J Solid State Electrochem 24, 2301–2313 (2020). https://doi.org/10.1007/s10008-020-04742-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04742-8

Keywords

Navigation