Skip to main content
Log in

Fabrication and characterization of CuO/CdS heterostructure for optoelectronic applications

  • Original Paper: Devices based on sol-gel or hybrid materials
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This paper reports the fabrication of a CuO/CdS heterostructure and the characterization of its properties for optical sensing. Cadmium sulfide (CdS) and cupric oxide (CuO) films were deposited by spray pyrolysis and hydrothermal techniques in order to fabricate CuO/CdS heterojunction devices. The structural, morphological, and optical properties of the CuO and CdS thin films were analyzed using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and UV–vis spectroscopy. The concentration of the sulfur precursor, thiourea, was varied over a range from 0.01 to 0.06 M in the spray coating solution for CdS films, and 0.05 M was found to yield improved structural and optical properties. The prepared p-CuO/n-CdS heterojunction exhibited good optical sensing properties with excellent response and recovery speeds. A possible photosensing mechanism for the fabricated heterostructure is detailed using energy band diagrams. In addition, heterojunction properties, including the ideality factor and conduction mechanism are reported: a fabricated heterostructure diode showed a threshold voltage of 0.036 V and an ideality factor of 1.86.

Highlights

  • p-CuO/n-CdS heterojunction photodiode is fabricated using hydrothermal and spray pyrolysis methods.

  • Sulphur concentration of 0.05 M shows excellent structural and optical properties of CdS film.

  • Fabricated heterojunction ideality factor is 1.86 and I-V nature indicated formation of diode.

  • The photodiode showed fast recovery and response times for visible light sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Chen Q, Wang T, Wang B, Yang X, Li F, Wang Y (2019) Construction of CuO/CdS composite nanostructure for photodegradation of pollutants in sewage. J Mater Sci: Mater Electron 30(17):15989–15999

    CAS  Google Scholar 

  2. Jothi NN, Christy PD, Suganthi AB, Ramalingam G, Sagayaraj P (2011) Development of CdS nanorods of high aspect ratio under hydrothermal conditions with PEG template. J Cryst Growth 316(1):126–131

    Article  Google Scholar 

  3. Niveditha C, Fatima MJ, Sindhu S (2016) Comprehensive interfacial study of potentio-dynamically synthesized copper oxide thin films for photoelectrochemical applications. J Electrochem Soc 163(6):H426–H433

    Article  CAS  Google Scholar 

  4. Yeon DH, Mohanty BC, Lee CY, Lee SM, Cho YS (2017) High-efficiency double absorber PbS/CdS heterojunction solar cells by enhanced charge collection using a ZnO nanorod array. ACS Omega 2(8):4894–4899

    Article  CAS  Google Scholar 

  5. Zhang N, Ma X, Yin Y, Chen Y, Li C, Yin J, Ruan S (2019) Synthesis of CuO–CdS composite nanowires and their ultrasensitive ethanol sensing properties. Inorg Chem Front 6(1):238–247

    Article  CAS  Google Scholar 

  6. Wu X-J, Chen J, Tan C, Zhu Y, Han Y, Zhang H (2016) Controlled growth of high-density CdS and CdSe nanorod arrays on selective facets of two-dimensional semiconductor nanoplates. Nat Chem 8(5):470–475

    Article  CAS  Google Scholar 

  7. Bosio A, Rosa G, Romeo N (2018) Past, present and future of the thin film CdTe/CdS solar cells. Sol Energy 175:31–43

    Article  CAS  Google Scholar 

  8. Kathalingam A, Ramesh S, Yadav HM, Choi J-H, Kim HS, Kim H-S (2020) Nanosheet-like ZnCo2O4@ nitrogen doped graphene oxide/polyaniline composite for supercapacitor application: effect of polyaniline incorporation. J Alloys Compounds 830;154734

  9. Rashad M, Rüsing M, Berth G, Lischka K, Pawlis A (2013) CuO and Co3O4 nanoparticles: synthesis, characterizations, and Raman spectroscopy. J Nanomaterials 2013;1–6

  10. Zhu D, Wang L, Yu W, Xie H (2018) Intriguingly high thermal conductivity increment for CuO nanowires contained nanofluids with low viscosity. Sci Rep. 8(1):1–12

    Article  Google Scholar 

  11. Oh J, Ryu H, Lee W-J (2019) Effects of Fe doping on the photoelectrochemical properties of CuO photoelectrodes. Compos Part B Eng 163:59–66

    Article  CAS  Google Scholar 

  12. Annathurai S, Chidambaram S, Baskaran B, Venkatesan GP (2019) Green synthesis and electrical properties of p-CuO/n-ZnO heterojunction diodes. J Inorg Organomet Polym Mater 29(2):535–540

    Article  CAS  Google Scholar 

  13. Wang C, Xu J, Shi S, Zhang Y, Gao Y, Liu Z, Zhang X, Li L (2017) Optimizing performance of Cu2O/ZnO nanorods heterojunction based self-powered photodetector with ZnO seed layer. J Phys Chem Solids 103:218–223

    Article  CAS  Google Scholar 

  14. El Mel A-A, Buffière M, Bouts N, Gautron E, Tessier P, Henzler K, Guttmann P, Konstantinidis S, Bittencourt C, Snyders R (2013) Growth control, structure, chemical state, and photoresponse of CuO–CdS core–shell heterostructure nanowires. Nanotechnology 24(26):265603

    Article  CAS  Google Scholar 

  15. Gaewdang T, Wongcharoen N (2015) Heterojunction properties of p-CuO/n-CdS diode. In: Advanced materials research. Trans Tech Publications, Chennai, India 1098:1–5. https://doi.org/10.4028/www.scientific.net/AMR.1098.1

  16. Septina W, Prabhakar RR, Wick R, Moehl T, Tilley SD (2017) Stabilized solar hydrogen production with CuO/CdS heterojunction thin film photocathodes. Chem Mater 29(4):1735–1743. https://doi.org/10.1021/acs.chemmater.6b05248

    Article  CAS  Google Scholar 

  17. Ashour A (2004) Physical properties of spray pyrolysed CdS thin films. Turkish J Phys 27(6):551–558

    Google Scholar 

  18. Kerimova A, Bagiyev E, Aliyeva E, Bayramov A (2017) Nanostructured CdS thin films deposited by spray pyrolysis method. Phys Status Solidi C 14(6):1600144. https://doi.org/10.1002/pssc.201600144

    Article  CAS  Google Scholar 

  19. Yadav AA, Barote MA, Masumdar EU (2010) Studies on nanocrystalline cadmium sulphide (CdS) thin films deposited by spray pyrolysis. Solid State Sci 12(7):1173–1177. https://doi.org/10.1016/j.solidstatesciences.2010.04.001

    Article  CAS  Google Scholar 

  20. Chen Z, Liu X, Zhao Y, Liang X, Chen Y, Wang L, Shen Y (2018) The study of the CdS film and the carrier transport characteristics of CdS/CuInS2 pn junction. J Sol-Gel Sci Technol 85(1):12–22. https://doi.org/10.1007/s10971-017-4525-6

    Article  CAS  Google Scholar 

  21. Anbarasi M, Nagarethinam VS, Baskaran R, Narasimman V (2016) Studies on the structural, morphological and optoelectrical properties of spray deposited CdS:Pb thin films. Pac Sci Rev A: Nat Sci Eng 18(1):72–77. https://doi.org/10.1016/j.psra.2016.08.004

    Article  Google Scholar 

  22. Kathalingam A, Vikraman D, Kim H-S, Park HJ (2017) Facile fabrication of n-ZnO nanorods/p-Cu2O heterojunction and its photodiode property. Optical Mater 66:122–130. https://doi.org/10.1016/j.optmat.2017.01.051

    Article  CAS  Google Scholar 

  23. David Prabu R, Valanarasu S, Ganesh V, Shkir M, AlFaify S, Kathalingam A (2018) Investigation of molar concentration effect on structural, optical, electrical, and photovoltaic properties of spray-coated Cu2O thin films. Surf Interface Anal 50(3):346–353. https://doi.org/10.1002/sia.6374

    Article  CAS  Google Scholar 

  24. Dolai S, Dey R, Das S, Hussain S, Bhar R, Pal AK (2017) Cupric oxide (CuO) thin films prepared by reactive d.c. magnetron sputtering technique for photovoltaic application. J Alloy Compd 724:456–464. https://doi.org/10.1016/j.jallcom.2017.07.061

    Article  CAS  Google Scholar 

  25. Shukor AH, Alhattab HA, Takano I (2020) Electrical and optical properties of copper oxide thin films prepared by DC magnetron sputtering. J Vac Sci Technol B 38(1):012803. https://doi.org/10.1116/1.5131518

    Article  CAS  Google Scholar 

  26. Outokesh M, Hosseinpour M, Ahmadi SJ, Mousavand T, Sadjadi S, Soltanian W (2011) Hydrothermal synthesis of CuO nanoparticles: study on effects of operational conditions on yield, purity, and size of the nanoparticles. Ind Eng Chem Res 50(6):3540–3554. https://doi.org/10.1021/ie1017089

    Article  CAS  Google Scholar 

  27. Li S, Zhang H, Ji Y, Yang D (2004) CuO nanodendrites synthesized by a novel hydrothermal route. Nanotechnology 15(11):1428–1432. https://doi.org/10.1088/0957-4484/15/11/007

    Article  CAS  Google Scholar 

  28. Yu H, Yu J, Liu S, Mann S (2007) Template-free hydrothermal synthesis of CuO/Cu2O composite hollow microspheres. Chem Mater 19(17):4327–4334. https://doi.org/10.1021/cm070386d

    Article  CAS  Google Scholar 

  29. Ravichandran K, Philominathan P (2008) Investigations on microstructural and optical properties of CdS films fabricated by a low-cost, simplified spray technique using perfume atomizer for solar cell applications. Sol Energy 82(11):1062–1066. https://doi.org/10.1016/j.solener.2008.04.012

    Article  CAS  Google Scholar 

  30. Soltani N, Saion E, Hussein MZ, Erfani M, Abedini A, Bahmanrokh G, Navasery M, Vaziri P (2012) Visible light-induced degradation of methylene blue in the presence of photocatalytic ZnS and CdS nanoparticles. Int J Mol Sci 13(10):12242–12258

    Article  CAS  Google Scholar 

  31. Apriandanu DOB, Yulizar Y (2019) Tinospora crispa leaves extract for the simple preparation method of CuO nanoparticles and its characterization. Nano Struct Nano Objects 20:100401

    Article  CAS  Google Scholar 

  32. Chandrappa K, Venkatesha T (2013) Electrochemical bulk synthesis and characterisation of hexagonal-shaped CuO nanoparticles. J Exp Nanosci 8(4):516–532

    Article  CAS  Google Scholar 

  33. Oladeji I, Chow L, Liu J, Chu W, Bustamante A, Fredricksen C, Schulte A (2000) Comparative study of CdS thin films deposited by single, continuous, and multiple dip chemical processes. Thin Solid Films 359(2):154–159

    Article  CAS  Google Scholar 

  34. Islam MA, Hossain MS, Aliyu MM, Chelvanathan P, Huda Q, Karim MR, Sopian K, Amin N (2013) Comparison of structural and optical properties of CdS thin films grown by CSVT, CBD and sputtering techniques. Energy Procedia 33:203–213. https://doi.org/10.1016/j.egypro.2013.05.059

    Article  CAS  Google Scholar 

  35. Maity P, Singh SV, Biring S, Pal BN, Ghosh AK (2019) Selective near-infrared (NIR) photodetectors fabricated with colloidal CdS:Co quantum dots. J Mater Chem C 7(25):7725–7733. https://doi.org/10.1039/C9TC01871A

    Article  CAS  Google Scholar 

  36. Wang H, Naghadeh SB, Li C, Cherrette VL, Fang P, Xu K, Zhang JZ (2019) Enhanced photoelectrochemical and photocatalytic properties of CdS nanowires decorated with Ni3S2 nanoparticles under visible light irradiation. J Electrochem Soc 166(5):H3146–H3153

    Article  CAS  Google Scholar 

  37. Chethana DM, Thanuja TC, Mahesh HM, Kiruba MS, Jose AS, Barshilia HC, Manjanna J (2020) Synthesis, structural, magnetic and NO2 gas sensing property of CuO nanoparticles. Ceram Int https://doi.org/10.1016/j.ceramint.2020.06.129

  38. Das B, Sa K, Chandra Mahakul P, Subramanyam BVRS, Das S, Alam I, Raiguru J, Mahanandia P (2018) Efficient ultraviolet photodetector device based on modulated wide band gap Type-II CuO/CdSe core-shell nanowires. Superlattices Microstructures 123:234–241. https://doi.org/10.1016/j.spmi.2018.08.021

    Article  CAS  Google Scholar 

  39. Mersian H, Alizadeh M (2020) Effect of diverse Pechini sol-gel parameters on the size, morphology, structural and optical properties of the Tenorite (CuO) NPs: a facile approach for desired properties. Ceram Int 46(11, Part A):17197–17208. https://doi.org/10.1016/j.ceramint.2020.03.275

    Article  CAS  Google Scholar 

  40. Tombak A, Benhaliliba M, Ocak YS, Kiliçoglu T (2015) The novel transparent sputtered p-type CuO thin films and Ag/p-CuO/n-Si Schottky diode applications. Results Phys 5:314–321. https://doi.org/10.1016/j.rinp.2015.11.001

    Article  Google Scholar 

  41. Hu C, Zeng X, Cui J, Chen H, Lu J (2013) Size effects of Raman and photoluminescence spectra of CdS nanobelts. J Phys Chem C 117(40):20998–21005

    Article  CAS  Google Scholar 

  42. Hasnat A, Podder J (2012) Effect of annealing temperature on structural, optical and electrical properties of pure CdS thin films deposited by spray pyrolysis technique. Adv Mater Phys Chem 2:226–231

  43. Nanda K, Sarangi S, Sahu S, Deb S, Behera S (1999) Raman spectroscopy of CdS nanocrystalline semiconductors. Phys B Condens Matter 262(1–2):31–39

    Article  CAS  Google Scholar 

  44. Kostić R, Romčević N (2004) Raman spectroscopy of CdS nanoparticles Phys Status Solidi (c) 1(11):2646–2649

    Article  Google Scholar 

  45. Xu J, Ji W, Shen Z, Li W, Tang S, Ye X, Jia D, Xin X (1999) Raman spectra of CuO nanocrystals. J Raman Spectrosc 30(5):413–415

    Article  CAS  Google Scholar 

  46. Murthy PS, Venugopalan V, Arunya DD, Dhara S, Pandiyan R, Tyagi A (2011) Antibiofilm activity of nano sized CuO. In: International Conference on Nanoscience, Engineering and Technology (ICONSET 2011). IEEE Xplore, Chennai, India pp 580–583. https://doi.org/10.1109/ICONSET.2011.6168037

  47. Kathalingam A, Rhee J-K (2012) Fabrication and characterization of solution processed n-ZnO nanowire/p-Si heterojunction device. J Nanosci Nanotechnol 12(9):6948–6954

    Article  CAS  Google Scholar 

  48. Gaewdang T, Wongcharoen N (2015) Heterojunction properties of p-CuO/n-CdS diode. Adv Mater Res 1098:1–5. https://doi.org/10.4028/www.scientific.net/AMR.1098.1

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Mid-career Researcher Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (No. 2019R1A2C2086747).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun-Seok Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kathalingam, A., Kesavan, K., Mary Pradeepa, V. et al. Fabrication and characterization of CuO/CdS heterostructure for optoelectronic applications. J Sol-Gel Sci Technol 96, 178–187 (2020). https://doi.org/10.1007/s10971-020-05391-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05391-z

Keywords

Navigation