Skip to main content

Advertisement

Log in

The investigation of hydrogenation behavior of furfural over sol–gel prepared Cu/ZrO2 catalysts

  • Original Paper: sol–gel and hybrid materials for catalytic, photoelectrochemical and sensor applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Hydrogenation of furfural over sol–gel Cu/ZrO2 catalysts was tested and selectivity to furfuryl alcohol (FA) and 2-methylfuran (MF) was investigated. Cu/ZrO2 catalysts were prepared by sol–gel method. BET, XRD, XPS, and TEM were used for characterization. The hydrogenation reactions were carried out by changing Cu content of the catalyst, the pressure, loading of catalyst, temperature, and time. The maximum 79.8% FA yield was obtained at 180 °C for 5 h under 1 MPa hydrogen pressure in the presence of 12% Cu containing non-noble metal catalysts. The maximum 56.4% MF yield was observed in the presence of 12% Cu containing metal catalysts at 200 °C under 2 MPa for 3 h. The increase in crystallinity of ZrO2 and decrease in BET surface area were observed after fifth use of 12% Cu containing catalyst. Although FA selectivity did not change, furfural conversion decreased from 100% to 58% at fifth reuse.

Highlights

  • Sol–gel Cu/ZrO2 catalysts were tested for furfural hydrogenation.

  • Catalyst containing different copper contents changed selectivity of FA and MF.

  • 79.8% FA yield was achieved at mild 180 oC under 1 MPa pressure for 5 h with 12% Cu containing catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yan K, Wu G, Lafleur T, Jarvis C (2014) Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals. Renew Sust Energy Rev 38:663–676

    Article  CAS  Google Scholar 

  2. Taylor MJ, Jiang L, Reichert J, Papageorgiou AC, Beaumont SK, Wilson K, Lee AF, Barth VJ, Kyriakou G (2017) J Phys Chem 121:8490–8497

    CAS  Google Scholar 

  3. Nagaraja BM, Padmasri AH, David Raju B, Rama Rao KS (2007) Vapor phase selective hydrogenation of furfural to furfuryl alcohol over Cu–MgO coprecipitated catalysts. J Mol Catal A 265:90–97

    Article  CAS  Google Scholar 

  4. Bhosale VK, Kulkarni SG, Kulkarn PS (2016) Ionic liquid and biofuel blend: a low-cost and high performance hypergolic fuel for propulsion application. ChemistrySelect 1:1921–1925

    Article  CAS  Google Scholar 

  5. An K, Musselwhite N, Kennedy G, Pushkarev VV, Baker LR, Somorjai GA (2013) Preparation of mesoporous oxides and their support effects on Pt nanoparticle catalysts in catalytic hydrogenation of furfural. J Colloid Interface Sci 392:122–128

    Article  CAS  Google Scholar 

  6. Lesiak M, Binczarski M, Karski S, Maniukiewicz W, Rogowski J, Szubiakiewicz E, Berlowska J, Dziugan P, Witońska I (2014) Hydrogenation of furfural over Pd–Cu/Al2O3 catalysts. The role of interaction between palladium and copper on determining catalytic properties. J Mol Catal A 395:337–348

    Article  CAS  Google Scholar 

  7. Panagiotopoulou P, Martin N, Vlachos DG (2014) Effect of hydrogen donor on liquid phase catalytic transfer hydrogenation of furfural over a Ru/RuO2/C catalyst. J Mol Catal A 392:223–228

    Article  CAS  Google Scholar 

  8. Nguyen-Huy C, Kim JS, Yoon S, Yang E, Kwak JH, Lee MS, An K (2018) Supported Pd nanoparticle catalysts with high activities and selectivities in liquid-phase furfural hydrogenation. Fuel 226:607–617

    Article  CAS  Google Scholar 

  9. Yan K, Chen A (2014) Selective hydrogenation of furfural and levulinic acid to biofuels on the ecofriendly Cu–Fe catalyst. Fuel 115:101–108

    Article  CAS  Google Scholar 

  10. Deutsch KL, Shank BH (2012) Active species of copper chromite catalyst in C–O hydrogenolysis of 5-methylfurfuryl alcohol. J Catal 285:235–241

    Article  CAS  Google Scholar 

  11. Rao R, Dandekar A, Baker RTK, Vannice MA (1997) Properties of copper chromite catalysts in hydrogenation reactions. J Catal 17:406–419

    Article  Google Scholar 

  12. Seemala B, Cai CM, Kumar R, Wyman CE, Christopher P (2018) Effects of Cu–Ni bimetallic catalyst composition and support on activity, selectivity, and stability for furfural conversion to 2-methyfuran. ACS Sustain Chem Eng 6:2152–2161

    Article  CAS  Google Scholar 

  13. Chen H, Ruan H, Lu X, Fu J, Langrish T, Lu X (2018) Efficient catalytic transfer hydrogenation of furfural to furfuryl alcohol in near-critical isopropanol over Cu/MgO–Al2O3 catalyst. Mol Catal 445:94–101

    Article  CAS  Google Scholar 

  14. Zhang Y, Fan G, Yang L, Li F (2018) Efficient conversion of furfural into cyclopentanone over high performing and stable Cu/ZrO2 catalysts. Appl Catal A 561:117–126

    Article  CAS  Google Scholar 

  15. Gong W, Chen C, Zhang H, Wang G, Zhao H (2018) In situ synthesis of highly dispersed Cu–Co bimetallic nanoparticles for tandem hydrogenation/rearrangement of bioderived furfural in aqueous-phase. ACS Sustain Chem Eng 6:14919–14925

    Article  CAS  Google Scholar 

  16. Sitthisa S, Sooknoi T, Ma Y, Balbuena PB, Resasco DE (2011) Kinetics and mechanism of hydrogenation of furfural on Cu/SiO2 catalysts. J Catal 277:1–13

    Article  CAS  Google Scholar 

  17. Vargas-Hernandez D, Rubio-Caballero JM, Santamaria-Gonzalez J, Moreno-Tost R, Merida-Robles JM, Perez-Cruz MA, Jimenez-Lopez A, Hernandez-Huesca R, Maireles-Torres P (2014) Furfuryl alcohol from furfural hydrogenation over copper supported on SBA-15 silica catalysts. J Mol Catal A 383– 384:106–113

    Article  Google Scholar 

  18. Wang Y, Miao Y, Li S, Gao L, Xiao G (2017) Metal-organic frameworks derived bimetallic Cu-Co catalyst for efficient and selective hydrogenation of biomass-derived furfural to furfuryl alcohol. Mol Catal 436:128–137

    Article  CAS  Google Scholar 

  19. Chen X, Zhang L, Zhang B, Guo X, Mu X (2016) Highly selective hydrogenation of furfural to furfuryl alcohol over Pt nanoparticles supported on g-C3N4 nanosheets catalysts in water. Sci Rep 6:28558

    Article  Google Scholar 

  20. Zhang C, Lai Q, Holles JH (2017) Bimetallic overlayer catalysts with high selectivity and reactivity for furfural hydrogenation. Catal Commun 89:77–80

    Article  CAS  Google Scholar 

  21. Srivastava S, Mohanty P, Parikh JK, Dalai AK, Amritphale SS, Khare AK (2015) Cr-free Co–Cu/SBA-15 catalysts for hydrogenation of biomass-derived α-, β-unsaturated aldehyde to alcohol. Chin J Catal 36:933–942

    Article  CAS  Google Scholar 

  22. Samson K, Śliwa M, Socha RP, Góra-Marek K, Mucha D, Rutkowska-Zbik D, Paul J-F, Ruggiero-Mikołajczyk M, Grabowski R, Słoczynski J (2014) ACS Catal 4:3730−3741

  23. Witoon T, Chalorngtham J, Dumrongbunditkul P, Chareonpanich M, Limtrakul J (2016) CO2 hydrogenation to methanol over Cu/ZrO2 catalysts: effects of zirconia phases. Chem Eng J 293:327–336

    Article  CAS  Google Scholar 

  24. Tada S, Kayamori S, Honma T, Kamei H, Nariyuki A, Kon K, Toyao T, K.-ichi Shimizu, Satokawa S (2018) Design of interfacial sites between Cu and amorphous ZrO2 dedicated to CO2-to-methanol hydrogenation. ACS Catal 8:7809–7819

    Article  CAS  Google Scholar 

  25. Li B, Li L, Sun H, Zhao C (2018) Selective deoxygenation of aqueous furfural to 2-methylfuran over Cu0/Cu2O·SiO2 sites via a copper phyllosilicate precursor without extraneous gas. ACS Sustain Chem Eng 6:12096–12103

    Article  CAS  Google Scholar 

  26. Ehsan MA, Hakeem AS, Khaledi H, Mazhar M, Shahid MM, Pandikumar A, Huang NM (2015) Fabrication of CuO–1.5ZrO2 composite thin film, from heteronuclear molecular complex and its electrocatalytic activity towards methanol oxidation. RSC Adv 5:103852–103862

    Article  CAS  Google Scholar 

  27. Nguyen-Huy C, Lee H, Lee J, Kwak JH, An K (2019) Mesoporous mixed CuCo oxides as robust catalysts for liquid-phase furfural hydrogenation. Appl Catal A 571:118–126

    Article  CAS  Google Scholar 

  28. Biesinger MC, Lau Leo WM, Gerson AR,StC, Smart R (2010) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl Surf Sci 257:887–898

    Article  CAS  Google Scholar 

  29. Zhang J, Feng A, Bai J, Tan Z, Shao W, Yang Y, Hong W, Xiao Z (2017) One-pot synthesis of hierarchical flower-like Pd-Cu alloy support on graphene towards ethanol oxidation. Nanoscale Res Lett 12:521–529

    Article  Google Scholar 

  30. Yu J, Ran J (2011) Facile preparation and enhanced photocatalytic H2-production activity of Cu(OH)2 cluster modified TiO2. Energy Environ Sci 4:1364–1371

    Article  CAS  Google Scholar 

  31. Dan Z, Yang Y, Qin F, Wang H, Chang H (2018) Facile fabrication of Cu2O nanobelts in ethanol on nanoporous Cu and their photodegradation of methyl orange. Materials 11:446–460

    Article  Google Scholar 

  32. Cheng N, Xue Y, Liu Q, Tian J, Zhang L, Asiri AM, Sun X (2015) Occurrence of breast mucinous carcinoma after autologous fat grating for breast augmentation. Electrochimica Acta 163:102–106

    Article  CAS  Google Scholar 

  33. Gaudin P, Fioux P, Dorge S, Nouali H, Vierling M, Fiani E, Molière M, Brilhac J-F, Patarin J (2016) Formation and role of Cu+ species on highly dispersed CuO/SBA-15 mesoporous materials for SOx removal: an XPS study. Fuel Process Technol 153:129–136

    Article  CAS  Google Scholar 

  34. Auroux A, Gervasini A, Guimon C (1999) Acidic character of metal-loaded amorphous and crystalline silica−aluminas determined by XPS and adsorption calorimetry. J Phys Chem B 103:7195–7205

    Article  CAS  Google Scholar 

  35. Bennici S, Gervasini A, Ravasio N, Zaccheria F (2003) Optimization of tailoring of CuOx species of silica alumina supported catalysts for the selective catalytic reduction of NOx. J Phys Chem B 107:5168–5176

    Article  CAS  Google Scholar 

  36. Liu S, Hou H, Liu X, Duan J, Yao Y, Liao Q (2017) High-performance hierarchical cypress-like CuO/Cu2O/Cu anode for lithium ion battery. Ionics 23:1075–1082

    Article  CAS  Google Scholar 

  37. Scholz D, Aellig C, Hermans I (2014) Catalytic transfer hydrogenation/hydrogenolysis for reductive upgrading of furfural and 5-(hydroxymethyl)furfural. ChemSusChem 7:268–275

    Article  CAS  Google Scholar 

  38. O’Driscoll A, Leahy JJ, Curtin T (2017) The influence of metal selection on catalyst activity for the liquid phase hydrogenation of furfural to furfuryl alcohol. Catal Today 279:194–201

    Article  Google Scholar 

  39. Fu Z, Wang Z, Lin W, Song W, Li S (2017) High efficient conversion of furfural to 2-methylfuran over Ni-Cu/Al2O3 catalyst with formic acid as a hydrogen donor. Appl Catal A Gen 547:248–255

    Article  CAS  Google Scholar 

  40. Zhang J, Chen J (2017) Selective transfer hydrogenation of biomass-based furfural and 5-hydroxymethylfurfural over hydrotalcite-derived copper catalysts using methanol as a hydrogen donor. ACS Sustain Chem Eng 5:5982–5993

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serkan Naci Koç.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Algorabi, S., Akmaz, S. & Koç, S.N. The investigation of hydrogenation behavior of furfural over sol–gel prepared Cu/ZrO2 catalysts. J Sol-Gel Sci Technol 96, 47–55 (2020). https://doi.org/10.1007/s10971-020-05352-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05352-6

Keywords

Navigation