Skip to main content
Log in

Polymer grafted GO/sulfonated copolyimide proton exchange nanocomposite membrane: as a polymer electrolyte membranes fuel cell

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Attaining a high performance proton exchange membrane as a suitable replacement for Nafion is one of the research priorities of fuel cell research. In this regard, we synthesized a copolyimide consisting of sulfonic acid substituents filled with different content of GO grafted sulfonated poly (urea-co-urethane) via in situ condensation polymerization. All nanocomposites showed a significant increase in thermal, mechanical properties, ion exchange capacity (IEC), water uptake (WU) and proton conductivity by incorporation of the modified GO nanosheets and the best results were found for membrane containing 1 wt% modified GO loading. The nanocomposite membrane with 1 wt% modified GO nanosheets exhibits 0.73 meq g−1 IEC and 7.3 mS cm−1 proton conductivity at room temperature. A single fuel cell test of this membrane demonstrates a maximum power density of 26.30 mW cm−2 at 0.26 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pelletier S, Jabali O, Laporte G (2016) Goods distribution with electric vehicles: review and research perspectives. Transp Sci 50:3–22

    Article  Google Scholar 

  2. Frenette G, Forthoffer D (2009) Economic & commercial viability of hydrogen fuel cell vehicles from an automotive manufacturer perspective. Int J Hydrog Energy 34:3578–3588

    Article  CAS  Google Scholar 

  3. Sharaf OZ, Orhan MF (2014) An overview of fuel cell technology: fundamentals and applications. Renew. Sust Energ Rev 32:810–853

    Article  CAS  Google Scholar 

  4. Wang Y, Chen KS, Mishler J, Chan Cho S, Cordobes Adroher X (2011) A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl Energy 88:981–1007

    Article  CAS  Google Scholar 

  5. Zhang H, Shen PK (2012) Recent development of polymer electrolyte membranes for fuel cells. Chem Rev 112:2780–2832

    Article  CAS  Google Scholar 

  6. Peighambardoust SJ, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell applications. Int J Hydrog Energy 75:9349–9384

    Article  Google Scholar 

  7. Kim DJ, Jo MJ, Nam SY (2015) A review of polymer-nanocomposite electrolyte membranes for fuel. J Ind Eng Chem 21:36–52

    Article  CAS  Google Scholar 

  8. Ahmadian-Alam L, Kheirmand M, Mahdavi H (2016) Preparation, characterization and properties of PVDF-g-PAMPS/PMMAco-PAMPS/silica nanoparticle as a new proton exchange nanocomposite membrane. Chem Eng J 284:1035–1048

    Article  CAS  Google Scholar 

  9. Tayouo R, David G, Ameduri B, Roziere J, Roualdes S (2010) New fluorinated polymers bearing pendant Phosphonic acid groups. Proton conducting membranes for fuel cell. Macromolecules 43:5269–5276

    Article  CAS  Google Scholar 

  10. Mauritz KA, Moore RB (2004) State of understanding of Nafion. Chem Rev 104:4535–4585

    Article  CAS  Google Scholar 

  11. Jiang Y, Hou M, Hao J, Yi B, Wang Z, Song W, Shao Z (2017) Enhanced durability of sulfonated poly (ether ether ketones)-based polymer electrolyte membranes by a multi-layer composite technology. Solid State Ionics 309:33–40

    Article  CAS  Google Scholar 

  12. Perez-Prior MT, Urena N, Tannenberg M, del Rıo C, Levenfeld B (2017) DABCO-functionalized polysulfones as anion-exchange membranes for fuel cell applications: effect of crosslinking. J Polym Sci B Polym Phys 55:1326–1336

    Article  Google Scholar 

  13. Molavian MR, Abdolmaleki A, Firouz Tadavani K, Zhiani M (2017) A new sulfonated poly (ether sulfone) hybrid with low humidity dependence for high temperature proton exchange membrane fuel cell applications. J Appl Polym Sci 134:45342

    Article  Google Scholar 

  14. Kim JD, Donnadio A, Jun MS, Di Vona ML (2018) Crosslinked SPES-SPPSU membranes for high temperature PEMFCs. Int J Hydrog Energy 38:1517–1523

    Article  Google Scholar 

  15. Özdemir Y, Üregen N, Devrim Y (2017) Polybenzimidazole based nanocomposite membranes with enhanced proton conductivity for high temperature PEM fuel cells. Int J Hydrog Energy 42:2648–2657

    Article  Google Scholar 

  16. Kraytsberg A, Ein-Eli Y (2014) A review of advanced materials for proton exchange membrane fuel cells. Energy Fuel 28:7303–7330

    Article  CAS  Google Scholar 

  17. Hickner MA, Pivovar BS (2010) The chemical and structural nature of proton exchange membrane fuel cell properties. Fuel Cells 5:213–229

    Article  Google Scholar 

  18. Martinez-Cisneros CS, Antonelli C, Levenfeld B, Varez A, Sanchez J-Y (2017) Sodium polymer electrolytes composed of sulfonated polysulfone and macromolecular/molecular solvents for Na-batteries. Electrochim Acta 245:807–813

    Article  CAS  Google Scholar 

  19. Lee JK, Li W, Manthiram A (2009) Poly (arylene ether sulfone) s containing pendant sulfonic acid groups as membrane materials for direct methanol fuel cells. J Membr Sci 330:73–79

    Article  CAS  Google Scholar 

  20. Lee WJ, Lee SH, Bayazit MK, Kim SO, Choi YS (2017) Alkylated Sulfonated poly (arylene sulfone) s for proton exchange membranes. Macromol Res 25:400–407

    Article  CAS  Google Scholar 

  21. Kim K, Kim SK, Park JO, Choi SW, Kim KH, Ko T, Pak C, Lee JC (2017) Highly reinforced pore-filling membranes based on sulfonated poly (arylene ether sulfone) s for high-temperature/low-humidity polymer electrolyte membrane fuel cells. J Membr Sci 537:11–21

    Article  CAS  Google Scholar 

  22. Wang XQ, Lin CX, Zhang QG, Zhu AM, Liu QL (2017) Anion exchange membranes from hydroxyl-bearing poly (ether sulfone) s with flexible spacers via ring-opening grafting for fuel cells. Int J Hydrog Energy 42:19044–19055

    Article  CAS  Google Scholar 

  23. Zarrin H, Higgins D, Jun Y, Chen Z, Fowler M (2011) Functionalized graphene oxide nanocomposite membrane for low humidity and high temperature proton exchange membrane fuel cells. J Phys Chem C 115:20774–20781

    Article  CAS  Google Scholar 

  24. Kowsari E, Zare A, Ansari V (2015) Phosphoric acid-doped ionic liquid-functionalized graphene oxide/sulfonated polyimide composites as proton exchange membrane. Int J Hydrog Energy 40:13964–13978

    Article  CAS  Google Scholar 

  25. Pandey RP, Shukla G, Manohar M, Shahi VK (2017) Graphene oxide based nanohybrid proton exchange membranes for fuel cell applications: an overview. Adv Colloid Interf Sci 240:15–30

    Article  CAS  Google Scholar 

  26. Pandey RP, Shahi VK (2015) Sulphonated imidized graphene oxide (SIGO) based polymer electrolyte membrane for improved water retention, stability and proton conductivity. J Power Sources 299:104–113

    Article  CAS  Google Scholar 

  27. Yao H, Shi K, Song N, Zhang N, Huo P, Zhu S, Zhang Y, Guan S (2016) Polymer electrolyte membranes based on cross-linked highly sulfonated copolyimides. Polymer 103:171–179

    Article  CAS  Google Scholar 

  28. Chen JC, Wu JA, Lee CY, Tsai MC, Chen KH (2015) Novel polyimides containing benzimidazole substituents for high temperature proton exchange membrane fuel cells. J Membr Sci 483:144–154

    Article  CAS  Google Scholar 

  29. Park J, Enomoto K, Yamashita T, Takagi Y, Todaka K, Maekawa Y (2013) Polymerization mechanism for radiation-induced grafting of styrene into alicyclic polyimide films for preparation of polymer electrolyte membranes. J Membr Sci 438:1–7

    Article  CAS  Google Scholar 

  30. Pandey RP, Shahi VK (2013) Aliphatic-aromatic sulphonated polyimide and acid functionalized polysilsesquioxane composite membranes for fuel cell applications. J Mater Chem A 1:14375–14383

    Article  CAS  Google Scholar 

  31. Li W, Guo X, Aili D, Martin S, Li Q, Fang J (2015) Sulfonated copolyimide membranes derived from a novel diamine monomer with pendant benzimidazole groups for fuel cells. J Membr Sci 481:44–53

    Article  CAS  Google Scholar 

  32. Pan H, Chen S, Zhang Y, Jin M, Chang Z, Pu H (2015) Preparation and properties of the cross-linked sulfonated polyimide containing benzimidazole as electrolyte membranes in fuel cells. J Membr Sci 476:87–94

    Article  CAS  Google Scholar 

  33. Ahmadian-Alam L, Teymoori M, Mahdavi H (2018) Graphene oxide-anchored reactive sulfonated copolymer via simple one pot condensation polymerization: proton-conducting solid electrolytes. J Polym Res 25:13–21

    Article  Google Scholar 

  34. Chang WY, Chen SH, Yang CH, Chuang CN, Wang CK, Hsieh KH (2015) Preparation and characterization of aromatic polyimides derived from 4,4′-oxydiphthalic anhydride and 4,4′-diaminodiphenylmethane with different alkyl substituents. J Polym Res 22:38–64

    Article  Google Scholar 

  35. Einsla BR, Hong YT, Kim YS, Wang F, Gunduz N, Mcgrath JE (2004) Sulfonated naphthalene dianhydride based polyimide copolymers for proton-exchange-membrane fuel cells. I. Monomer and Copolymer Synthesis. J Polym Sci Part A Polym Chem 42:862–874

    Article  CAS  Google Scholar 

  36. Ahmadian-Alam L, Haddadi-Asl V, Roghani-Mamaqani H, Hatami L, Salami-Kalajahi M (2012) Use of clay-anchored reactive modifier for the synthesis of poly (styrene-co-butyl acrylate)/clay nanocomposite via in situ AGET ATRP. J Polym Res 19:9773–9784

    Article  Google Scholar 

  37. Salarizadeh P, Javanbakht M, Pourmahdian S (2015) Fabrication and physico-chemical properties of iron titanate nanoparticles based sulfonated poly (ether ether ketone) membrane forproton exchange membrane fuel cell application. Solid State Ionics 281:12–20

    Article  CAS  Google Scholar 

  38. Ryu T, Sutradhar SC, Ahmed F, Choi K, Yang H, Yoon S, Lee S, Kim W (2017) Synthesis and characterization of sulfonated mutiphenyl conjugated polyimide for PEMFC. J Ind Eng Chem 49:99–104

    Article  CAS  Google Scholar 

  39. Mandal AK, Bera D, Banerjee S (2016) Sulfonated polyimides containing triphenylphosphine oxide for proton exchange membranes. Mater Chem Phys 181:265–276

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Iran National Science Foundation (INSF) for the grants provided for them.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Mahdavi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadian-Alam, L., Teymoori, M. & Mahdavi, H. Polymer grafted GO/sulfonated copolyimide proton exchange nanocomposite membrane: as a polymer electrolyte membranes fuel cell. J Polym Res 27, 302 (2020). https://doi.org/10.1007/s10965-020-02049-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02049-w

Keywords

Navigation