Skip to main content

Advertisement

Log in

Cardiovascular and body weight regulation changes in transgenic mice overexpressing thyrotropin-releasing hormone (TRH)

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Thyrotropin-releasing hormone (TRH) plays several roles as a hormone/neuropeptide. Diencephalic TRH (dTRH) participates in the regulation of blood pressure in diverse animal models, independently of the thyroid status. The present study aimed to evaluate whether chronic overexpression of TRH in mice affects cardiovascular and metabolic variables. We developed a transgenic (TG) mouse model that overexpresses dTrh. Despite having higher food consumption and water intake, TG mice showed significantly lower body weight respect to controls. Also, TG mice presented higher blood pressure, heart rate, and locomotor activity independently of thyroid hormone levels. These results and the higher urine noradrenaline excretion observed in TG mice suggest a higher metabolic rate mediated by sympathetic overflow. Cardiovascular changes were impeded by siRNA inhibition of the diencephalic Trh overexpression. Also, the silencing of dTRH in the TG mice normalized urine noradrenaline excretion, supporting the view that the cardiovascular effects of TRH involve the sympathetic system. Overall, we show that congenital dTrh overexpression leads to an increase in blood pressure accompanied by changes in body weight and food consumption mediated by a higher sympathetic overflow. These results provide new evidence confirming the participation of TRH in cardiovascular and body weight regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Burgueno AL, Landa MS, Schuman ML, Alvarez AL, Carabelli J, Garcia SI, Pirola CJ (2007) Association between diencephalic thyroliberin and arterial blood pressure in agouti-yellow and ob/ob mice may be mediated by leptin. Metabolism 56:1439–1443. https://doi.org/10.1016/j.metabol.2007.06.008

    Article  CAS  PubMed  Google Scholar 

  2. Catalano PN, Bonaventura MM, Silveyra P, Bettler B, Libertun C, Lux-Lantos VA (2005) GABA(B1) knockout mice reveal alterations in prolactin levels, gonadotropic axis, and reproductive function. Neuroendocrinology 82:294–305. https://doi.org/10.1159/000093128

    Article  CAS  PubMed  Google Scholar 

  3. Delorenzi A, Pedreira ME, Romano A, Garcia SI, Pirola CJ, Nahmod VE, Maldonado H (1996) Angiotensin II enhances long-term memory in the crab Chasmagnathus. Brain Res Bull. 41:211–220. https://doi.org/10.1016/s0361-9230(96)00178-5

    Article  CAS  PubMed  Google Scholar 

  4. Garcia SI, Pirola CJ (2005) Thyrotropin-releasing hormone in cardiovascular pathophysiology. Regul.Pept. 128:239–246. https://doi.org/10.1016/j.regpep.2005.01.002

    Article  CAS  PubMed  Google Scholar 

  5. Garcia SI, Pirola CJ, Dabsys SM, Santajuliana D, Delorenzi A, Finkielman S, Nahmod VE (1992) The cholinergic system participates in thyrotropin-releasing hormone (TRH) regulation. Neurosci.Lett. 135:193–195

    Article  CAS  Google Scholar 

  6. Garcia SI, Dabsys SM, Martinez VN, Delorenzi A, Santajuliana D, Nahmod VE, Finkielman S, Pirola CJ (1995) Thyrotropin-releasing hormone hyperactivity in the preoptic area of spontaneously hypertensive rats. Hypertension 26:1105–1110

    Article  CAS  Google Scholar 

  7. Garcia SI, Porto PI, Alvarez AL, Martinez VN, Shaurli D, Finkielman S, Pirola CJ (1997) Central overexpression of the TRH precursor gene induces hypertension in rats: antisense reversal. Hypertension 30:759–766

    Article  CAS  Google Scholar 

  8. Garcia SI, Alvarez AL, Porto PI, Garfunkel VM, Finkielman S, Pirola CJ (2001) Antisense inhibition of thyrotropin-releasing hormone reduces arterial blood pressure in spontaneously hypertensive rats. Hypertension 37:365–370

    Article  CAS  Google Scholar 

  9. Hartnell JM, Pekary AE, Hershman JM (1987) Comparison of the effects of pulsatile and continuous TRH infusion on TSH release in men. Metabolism 36:878–882. https://doi.org/10.1016/0026-0495(87)90097-7

    Article  CAS  PubMed  Google Scholar 

  10. Ishikawa K, Taniguchi Y, Inoue K, Kurosumi K, Suzuki M (1988) Immunocytochemical delineation of thyrotrophic area: origin of thyrotropin-releasing hormone in the median eminence. Neuroendocrinology 47:384–388

    Article  CAS  Google Scholar 

  11. Knight WD, Swoap SJ, Parsons AD, Overton JM (2006) Central thyrotropin-releasing hormone infusion opposes cardiovascular and metabolic suppression during caloric restriction. Neuroendocrinology 83:69–76. https://doi.org/10.1159/000094004

    Article  CAS  PubMed  Google Scholar 

  12. Kokubo Y, Tomoike H, Tanaka C, Banno M, Okuda T, Inamoto N, Kamide K, Kawano Y, Miyata T (2006) Association of sixty-one non-synonymous polymorphisms in forty-one hypertension candidate genes with blood pressure variation and hypertension. Hypertens Res. 29:611–619. https://doi.org/10.1291/hypres.29.611

    Article  CAS  PubMed  Google Scholar 

  13. Konturek PC, Konturek JW, Czesnikiewicz-Guzik M, Brzozowski T, Sito E, Konturek SJ (2005) Neuro-hormonal control of food intake: basic mechanisms and clinical implications. J Physiol Pharmacol 56(Suppl 6):5–25

    PubMed  Google Scholar 

  14. Labosky PA, Barlow DP, Hogan BL (1994) Mouse embryonic germ (EG) cell lines: transmission through the germline and differences in the methylation imprint of insulin-like growth factor 2 receptor (Igf2r) gene compared with embryonic stem (ES) cell lines. Development 120:3197–3204

    CAS  PubMed  Google Scholar 

  15. Landa MS, Garcia SI, Schuman ML, Burgueno A, Alvarez AL, Saravia FE, Gemma C, Pirola CJ (2007) Knocking down the diencephalic thyrotropin-releasing hormone precursor gene normalizes obesity-induced hypertension in the rat. Am J Physiol Endocrinol Metab 292:E1388–E1394. https://doi.org/10.1152/ajpendo.00234.2006

    Article  CAS  PubMed  Google Scholar 

  16. Landa MS, Schuman ML, Burgueno A, Alvarez AL, Garcia SI, Pirola CJ (2007) SiRNA-mediated silencing of the diencephalic thyrotropin-releasing hormone precursor gene decreases the arterial blood pressure in the obese agouti mice. Front Biosci 12:3431–3435

    Article  CAS  Google Scholar 

  17. Landa MS, Garcia SI, Schuman ML, Alvarez AL, Finkielman S, Pirola CJ (2008) Thyrotropin-releasing hormone precursor gene knocking down impedes melanocortin-induced hypertension in rats. Hypertension 52:e8. https://doi.org/10.1161/HYPERTENSIONAHA.108.114686

    Article  CAS  PubMed  Google Scholar 

  18. Lechan RM, Fekete C (2006) The TRH neuron: a hypothalamic integrator of energy metabolism. Prog Brain Res 153:209–235. https://doi.org/10.1016/S0079-6123(06)53012-2

    Article  CAS  PubMed  Google Scholar 

  19. Lechan RM, Jackson IM (1982) Immunohistochemical localization of thyrotropin-releasing hormone in the rat hypothalamus and pituitary. Endocrinology 111:55–65. https://doi.org/10.1210/endo-111-1-55

    Article  CAS  PubMed  Google Scholar 

  20. Mariman EC, Bouwman FG, Aller EE, van Baak MA, Wang P (2015) Extreme obesity is associated with variation in genes related to the circadian rhythm of food intake and hypothalamic signaling. Physiol Genomics 47:225–231. https://doi.org/10.1152/physiolgenomics.00006.2015

    Article  CAS  PubMed  Google Scholar 

  21. Mattila J, Bunag RD (1986) Sympathomimetic pressor responses to thyrotropin-releasing hormone in rats. Am J Physiol 251:H86–H92

    CAS  PubMed  Google Scholar 

  22. Nillni EA (2010) Regulation of the hypothalamic thyrotropin releasing hormone (TRH) neuron by neuronal and peripheral inputs. Front Neuroendocrinol 31:134–156. https://doi.org/10.1016/j.yfrne.2010.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nillni EA, Sevarino KA (1999) The biology of pro-thyrotropin-releasing hormone-derived peptides. Endocr Rev 20:599–648. https://doi.org/10.1210/edrv.20.5.0379

    Article  CAS  PubMed  Google Scholar 

  24. Nillni EA, Luo LG, Jackson IM, McMillan P (1996) Identification of the thyrotropin-releasing hormone precursor, its processing products, and its coexpression with convertase 1 in primary cultures of hypothalamic neurons: anatomic distribution of PC1 and PC2. Endocrinology 137:5651–5661. https://doi.org/10.1210/endo.137.12.8940396

    Article  CAS  PubMed  Google Scholar 

  25. Peres Diaz LS, Schuman ML, Aisicovich M, Toblli JE, Pirola CJ, Landa MS, Garcia SI (2018) Angiotensin II requires an intact cardiac thyrotropin-releasing hormone (TRH) system to induce cardiac hypertrophy in mouse. J Mol Cell Cardiol 124:1–11. https://doi.org/10.1016/j.yjmcc.2018.09.009

    Article  CAS  PubMed  Google Scholar 

  26. Pirola CJ, Balda MS, Finkielman S, Nahmod VE (1983) Thyrotropin-releasing hormone increases the number of muscarinic receptors in the lateral septal area of the rat brain. Brain Res. 273:387–391

    Article  CAS  Google Scholar 

  27. Schwartz C, Hampton M, Andrews MT (2015) Hypothalamic gene expression underlying pre-hibernation satiety. Genes Brain Behav 14:310–318. https://doi.org/10.1111/gbb.12199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Van Vliet BN, Chafe LL, Montani JP (2003) Characteristics of 24 h telemetered blood pressure in eNOS-knockout and C57Bl/6J control mice. J Physiol 549:313–325. https://doi.org/10.1113/jphysiol.2003.041897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Weinkove C (1991) ACP Broadsheet No 127: April 1991. Measurement of catecholamines and their metabolites in urine. J Clin Pathol 44:269–275

    Article  CAS  Google Scholar 

  30. Wittmann G, Fuzesi T, Singru PS, Liposits Z, Lechan RM, Fekete C (2009) Efferent projections of thyrotropin-releasing hormone-synthesizing neurons residing in the anterior parvocellular subdivision of the hypothalamic paraventricular nucleus. J Comp Neurol 515:313–330. https://doi.org/10.1002/cne.22017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. R. Ariel Gomez (Department of Pediatrics and Department of Biology, University of Virginia, Charlottesville, VA, USA) and his group for the development of the transgenic mice. We also thank Noelia Gonzales Mansilla for the technical assistance.

Funding

This work was supported by PICT 2010-2581 and PICT 2018-00620 (Agencia Nacional de Promoción Científica y Tecnológica). Young investigator fellowship from the Argentine Society of Hypertension (SAHA), Buenos Aires, Argentina.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of research were performed by Carlos J. Pirola. Experiments were performed by María Silvina Landa, Silvia I Garcia, Ludmila Peres Diaz, Mariano Schuman, and Maia Aisicovich. Data analysis was performed by María Silvina Landa and Silvia I. García. Interpreted experimental results were performed by María Silvina Landa, Silvia I. García, Carlos J. Pirola, and Mariano L. Schuman. Carlos J. Pirola and Silvia García drafted, edited, and revised the final version of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to María Silvina Landa or Carlos José Pirola.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

The experimental procedures and protocols were approved by the Institutional Animal Care and Use Committee CICUAL, Instituto de Investigaciones Médicas, IDIM-CONICET (N°034-15).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key Points

• Transgenic mice overexpressing TRH present higher blood pressure and a lower body weight despite increased food consumption and water intake.

• A specific siRNA against Trh injected intracerebroventricularly normalized blood pressure.

• Cardiovascular and body weight regulation changes induced by TRH overexpression are dependent on an increased sympathetic tone but not thyroid hormones.

Electronic supplementary material

ESM 1

(DOC 246 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landa, M.S., García, S.I., Schuman, M.L. et al. Cardiovascular and body weight regulation changes in transgenic mice overexpressing thyrotropin-releasing hormone (TRH). J Physiol Biochem 76, 599–608 (2020). https://doi.org/10.1007/s13105-020-00765-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-020-00765-x

Keywords

Navigation