Skip to main content

Advertisement

Log in

A Robotized Non-destructive Quality Device for the Inspection of Glue Joints by Active Thermography

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Due to its flexibility for use in various applications active thermography is of interest for non-destructive evaluation of defects in various materials. In particular, active thermography allows for identification of imperfections inside glue joints like delaminations, air pockets or inclusions of foreign particles. The contribution of this work is the development and validation of a small and portable device that can inspect large glue joints of fiber composites components like aircraft fuselages and wind turbine blades. The thermography device consists of a heat source and an infrared camera mounted to a mobile industrial robot system that guides the device along a trajectory above the inspection object. At the same time, images are acquired by the infrared camera and the current position of the device is monitored. The images are processed via LabVIEW to automatically detect irregularities and save the coordinates and an image of the defect in a log. This enables tracking, closer analysis and eventual repairs. Compared to previous thermography procedures this method allows downsizing of the heat source and flexible adjustments to the size and contour of the test component. As a result, it is possible to reduce testing times and divide the complete surface into small areas which allows detection of sub-millimeter defects during the manufacturing process and for example inspection of wind turbines already in operation. Therefore, this device is a powerful tool for quality management in the industry 4.0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Avdelidis, N.P., Gan, T.-H.: Non-destructive evaluation (NDE) of composites: infrared (IR) thermography of wind turbine blades. In: Non-destructive evaluation (NDE) of polymer matrix composites, Elsevier: pp. 634–650. (2013) https://doi.org/10.1533/9780857093554.4.634

  2. Avdelidis, N.P., Almond, D.P.: Transient thermography as a through skin imaging technique for aircraft assembly: modelling and experimental results. Infrared Phys. Technol. 45, 103–114 (2004). https://doi.org/10.1016/j.infrared.2003.07.002

    Article  Google Scholar 

  3. Boccardi, S., Boffa, N.D., Carlomagno, G.M., Maio, L., Meola, C., Ricci, F.: Infrared thermography and ultrasonics to evaluate composite materials for aeronautical applications. J. Phys: Conf. Ser. 658, 012007 (2015). https://doi.org/10.1088/1742-6596/658/1/012007

    Article  Google Scholar 

  4. Wong, Y.H., Thomas, R.L., Hawkins, G.F.: Surface and subsurface structure of solids by laser photoacoustic spectroscopy. Appl. Phys. Lett. 32, 538–539 (1978). https://doi.org/10.1063/1.90120

    Article  Google Scholar 

  5. Wong, Y.H., Thomas, R.L., Pouch, J.J.: Subsurface structures of solids by scanning photoacoustic microscopy. Appl. Phys. Lett. 35, 368–369 (1979). https://doi.org/10.1063/1.91153

    Article  Google Scholar 

  6. Busse, G.: Photothermal transmission probing of a metal. Infrared Phys. 20, 419–422 (1980). https://doi.org/10.1016/0020-0891(80)90059-7

    Article  Google Scholar 

  7. Berglind, H., Dillenz, A.: Detection of glue deficiency in laminated wood with pulse thermography. J. Wood Sci. 49, 216–220 (2003). https://doi.org/10.1007/s10086-002-0478-6

    Article  Google Scholar 

  8. Zhang, H., Sfarra, S., Osman, A., Ibarra-Castanedo, C., Maldague, X.P.V.: Robotized line-scan thermographic mid-wave infrared vision for artwork inspection: a study on famous mock-ups. In: Osman, A., Moropoulou, A. (eds.) Nondestructive Evaluation and Monitoring Technologies, Documentation, Diagnosis and Preservation of Cultural Heritage, pp. 64–74. Springer International Publishing, Cham (2019)

    Chapter  Google Scholar 

  9. Zweschper, Th., Dillenz, A., Riegert, G., Busse, G.: Thermography with excitation by elastic waves: comparison of techniques (pulse, burst, lockin), In: Proceedings of the 2002 International Conference on Quantitative InfraRed Thermography, QIRT Council. (2002). https://doi.org/10.21611/qirt.2002.003

  10. Rantala, J., Wu, D., Busse, G.: Amplitude-modulated lock-in vibrothermography for NDE of polymers and composites. Res. Nondestr. Eval. 7, 215–228 (1996). https://doi.org/10.1007/BF01606389

    Article  Google Scholar 

  11. Rantala, J., Wu, D., Busse, G.: NDT of polymer materials using lock-in thermography with water-coupled ultrasonic excitation. NDT & E Int. 31, 43–49 (1998). https://doi.org/10.1016/S0963-8695(97)00021-2

    Article  Google Scholar 

  12. Vrana, J., Goldammer, M., Bailey, K., Rothenfusser, M., Arnold, W., Thompson, D.O., Chimenti, D.E.: Induction and conduction thermography: optimizing the electromagnetic excitation towards application. In: AIP Conference Proceedings, AIP, Chicago (IL), pp. 518–525,(2009). https://doi.org/10.1063/1.3114299

  13. Goldammer, M., Mooshofer, H., Rothenfusser, M., Bass, J., Vrana, J., Thompson, D.O., Chimenti, D.E.: Automated induction thermography of generator components. In: Kingston (Rhode Island), pp. 451–457, (2010). https://doi.org/10.1063/1.3362428

  14. Shepard, S.M.: Introduction to active thermography for non-destructive evaluation. Anti-Corros. Methods Mater. 44, 236–239 (1997). https://doi.org/10.1108/00035599710183199

    Article  Google Scholar 

  15. Avdelidis, N.P., Almond, D.P.: Through skin sensing assessment of aircraft structures using pulsed thermography. NDT & E Int. 37, 353–359 (2004). https://doi.org/10.1016/j.ndteint.2003.10.009

    Article  Google Scholar 

  16. Busse, G., Wu, D., Karpen, W.: Thermal wave imaging with phase sensitive modulated thermography. J. Appl. Phys. 71, 3962–3965 (1992). https://doi.org/10.1063/1.351366

    Article  Google Scholar 

  17. Wu, D., Salerno, A., Schoenbach, B., Hallin, H., Busse, G.: Phase-sensitive modulation thermography and its applications for NDE. In: Wurzbach, R.N., Burleigh D.D. (eds.). Orlando, FL, pp. 176–183: (1997). https://doi.org/10.1117/12.271641

  18. Maldague, X., Marinetti, S.: Pulse phase infrared thermography. J. Appl. Phys. 79, 6 (2014)

    Google Scholar 

  19. Ishikawa, M., Hatta, H., Habuka, Y., Fukui, R., Utsunomiya, S.: Detecting deeper defects using pulse phase thermography. Infrared Phys. Technol. 57, 42–49 (2013). https://doi.org/10.1016/j.infrared.2012.11.009

    Article  Google Scholar 

  20. Zalameda, J.N., Bolduc, S., Harman, R.: Thermal inspection of a composite fuselage section using a fixed eigenvector principal component analysis method. In: Proceeding of SPIE Vol. 10214, Anaheim, CA. p. 102140H, (2017). https://doi.org/10.1117/12.2264093

  21. Juarez, P.D., Gregory, E.D.: In situ thermal inspection of automated fiber placement manufacturing. In: 45th annual review of progress in quantitative nondestructive evaluation, volume 38, Vermont. p. 120005, (2019) https://doi.org/10.1063/1.5099847

  22. Schmidt, T. Dutta, S.: Automation in Production Integrated NDT Using Thermography. In: NDT in Aerospace, Augsburg, p. 8, (2012)

  23. Thiemann, C., Zäh, M.F.: Zerstörungsfreie Prüfung durch aktive Thermografie im kontinuierlichen Bauteildurchlauf. In: Thermographie-Kolloquium 2011, Leinfelden-Echterdingen, p. 11. (2011)

  24. Busch, M., Faupel, B.: A robot inspection system allows the detection of defects in adhesive bonds between CFRP components by using active thermography, leading to reduces cycle times. In: World Conference on Non-Destructive Testing, München, p. 7, (2016)

  25. Fourier, J.: Théorie du mouvement de la chaleur dans les corps solides, Memoires de l’Academie Des Sciences. 5th edn. pp. 153–246, (1826)

  26. Angström, A.J.: XVII. New method of determining the thermal conductibility of bodies. Lond. Edinb. Dublin Philos. Mag. J. Sci. 25, 130–142 (1863). https://doi.org/10.1080/14786446308643429

    Article  Google Scholar 

  27. Kuo, P.K., Sendler, E.D., Favro, L.D., Thomas, R.L.: Mirage-effect measurement of thermal diffusivity. Part II: theory. Can. J. Phys. 64, 1168–1171 (1986). https://doi.org/10.1139/p86-203

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hill.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hill, M., Faupel, B. A Robotized Non-destructive Quality Device for the Inspection of Glue Joints by Active Thermography. J Nondestruct Eval 39, 72 (2020). https://doi.org/10.1007/s10921-020-00712-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-020-00712-2

Keywords

Navigation