Skip to main content

Advertisement

Log in

Influence of sugars in preparing improved FeAl catalyst for carbon dioxide hydrogenation

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The influences of sugars (sucrose, fructose and glucose) on the performance of FeAl catalysts were investigated for CO2 hydrogenation. FeAl catalysts were prepared with two steps. At first, the catalyst precursors were obtained by co-precipitation. During this step, three methods were used to add sucrose into the precursors. Then, promoter K and Cu were impregnated into the precursors. The improved CO2 conversion and C5+ hydrocarbon selectivity by sucrose addition were attributed to the formation of γ-Fe2O3 phase in the catalyst precursor, which was different from the popular opinion that sucrose acted as a chelating agent. With the inspiration from sucrose hydrolysis effect, FeAl oxide, mainly in γ-Fe2O3 phase was prepared by adding fructose and glucose (the products of sucrose hydrolysis) into the newly centrifuged precipitate. The formation of γ-Fe2O3 phase was explained based on the results of XRD and XPS. The best catalyst possessed CO2 conversion of 30.3% and C5 + selectivity of 52.2% under the reaction conditions of H2:CO2 = 3:1, 6.0 L/(h·g-cat), 1.6 MPa and 235 °C.

Graphic abstract

Effects of fructose and glucose on FeAl catalyst

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Najera M, Solunke R, Gardner T and Veser G 2011 Carbon capture and utilization via chemical looping dry reforming Chem. Eng. Res. Des. 89 1533

    Article  CAS  Google Scholar 

  2. Albrecht M, Rodemerck U, Schneider M, Bröring M, Baabe D and Kondratenko E V 2017 Unexpectedly efficient CO2 hydrogenation to higher hydrocarbons over non-doped Fe2O3 Appl. Catal. B 204 119

    Article  CAS  Google Scholar 

  3. Mutschler R, Moioli E, Luo W, Gallandat N and Züttel A 2018 CO2 hydrogenation reaction over pristine Fe, Co, Ni, Cu and Al2O3 supported Ru: Comparison and determination of the activation energies J. Catal. 366 139

    Article  CAS  Google Scholar 

  4. Mattia D, Jones M D, O’Byrne J P, Griffiths O G, Owen R E, Sackville E, McManus M and Plucinski P 2015 Towards carbon-neutral CO2 conversion to hydrocarbons ChemSusChem 8 4064

    Article  CAS  Google Scholar 

  5. Choi Y H, Jang Y J, Park H, Kim W Y, Lee Y H, Choi S H and Lee J S 2017 Carbon dioxide Fischer–Tropsch synthesis: A new path to carbon-neutral fuels Appl. Catal. B 202 605

    Article  CAS  Google Scholar 

  6. Díez-Ramírez J, Sánchez P, Kyriakou V, Zafeiratos S, Marnellos G E, Konsolakis M and Dorado F 2017 Effect of support nature on the cobalt-catalyzed CO2 hydrogenation J. CO2 Util. 21 562

    Article  Google Scholar 

  7. Yang H, Zhang C, Gao P, Wang H, Li X, Zhong L, Wei W and Sun Y 2017 A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons Catal. Sci. Technol. 7 4580

    CAS  Google Scholar 

  8. Liu B, Geng S, Zheng J, Jia X, Jiang F and Liu X 2018 Unravelling the new roles of Na and Mn promoter in CO2 hydrogenation over Fe3O4-based catalysts for enhanced selectivity to light α-olefins ChemCatChem 10 4718

    CAS  Google Scholar 

  9. Riedel T, Claeys M, Schulz H, Schaub G, Nam S-S, Jun K-W, Choi M-J, Kishan G and Lee K-W 1999 Comparative study of Fischer-Tropsch synthesis with H2/CO and H2/CO2 syngas using Fe- and Co-based catalysts Appl. Catal. A 186 201

    Article  CAS  Google Scholar 

  10. Zhang Y, Jacobs G, Sparks D E, Dry M E and Davis B H 2002 CO and CO2 hydrogenation study on supported cobalt Fischer-Tropsch synthesis catalysts Catal. Today 71 411

    Article  CAS  Google Scholar 

  11. Satthawong R, Koizumi N, Song C and Prasassarakich P 2015 Light olefin synthesis from CO2 hydrogenation over K-promoted Fe-Co bimetallic catalysts Catal. Today 251 34

    Article  CAS  Google Scholar 

  12. Ning W, Koizumi N and Yamada M 2009 Researching Fe catalyst suitable for CO2-containing syngas for Fischer–Tropsch synthesis Energy Fuels 23 4696

    Article  CAS  Google Scholar 

  13. Dorner R W, Hardy D R, Williams F W and Willauer H D 2010 K and Mn doped iron-based CO2 hydrogenation catalysts: Detection of KAlH4 as part of the catalyst’s active phase Appl. Catal. A 373 112

    Article  CAS  Google Scholar 

  14. Ning W, Li B, Wang B, Yang X and Jin Y 2019 Enhanced production of C5+ hydrocarbons from CO2 hydrogenation by the synergistic effects of Pd and K on γ-Fe2O3 catalyst Catal. Lett. 149 431

    Article  CAS  Google Scholar 

  15. Wei J, Ge Q, Yao R, Wen Z, Fang C, Guo L, Xu H and Sun J 2017 Directly converting CO2 into a gasoline fuel Nat. Commun. 8 15174

    Article  Google Scholar 

  16. Ning W, Wang T, Chen H, Yang X and Jin Y 2017 The effect of Fe2O3 crystal phases on CO2 hydrogenation PLoS ONE. 12 e0182955

    Google Scholar 

  17. Liu J, Zhang A, Jiang X, Liu M, Zhu J, Song C and Guo X 2018 Direct transformation of carbon dioxide to value-added hydrocarbons by physical mixtures of Fe5C2 and K-modified Al2O3 Ind. Eng. Chem. Res. 57 9120

    Article  CAS  Google Scholar 

  18. Drab D M, Willauer H D, Olsen M T, Ananth R, Mushrush G W, Baldwin J W, Hardy D R and Williams F W 2013 Hydrocarbon synthesis from carbon dioxide and hydrogen: A two-step process Energy Fuels 27 6348

    Article  CAS  Google Scholar 

  19. Chen H-X, Ning W-S, Chen C-H and Zhang T 2015 Influence of Fe2O3 crystal phase on the performance of Fe-based catalysts for CO2 hydrogenation J. Fuel Chem. Technol. 43 1387

    CAS  Google Scholar 

  20. Bukur D B, Mukesh D and Patel S A 1990 Promoter effects on precipitated iron catalysts for Fischer–Tropsch synthesis Ind. Eng. Chem. Res. 29 194

    Article  CAS  Google Scholar 

  21. Ning W, Yang X and Yamada M 2012 Influence of palladium on the hydrocarbon distribution of Fischer-Tropsch reaction over precipitated iron catalyst Curr. Catal. 1 88

    Article  CAS  Google Scholar 

  22. Herranz T, Rojas S, Pérez-Alonso F J, Ojeda M, Terreros P and Fierro J L G 2006 Carbon oxide hydrogenation over silica-supported iron-based catalysts Influence of the preparation route Appl. Catal. A 308 19

    Article  CAS  Google Scholar 

  23. Ning W, Yang S, Chen H and Yamada M 2013 Influences of K and Cu on coprecipitated FeZn catalysts for Fischer–Tropsch reaction Catal. Commun. 39 74

    Article  CAS  Google Scholar 

  24. Echeverria E 1990 Developmental transition from enzymatic to acid hydrolysis of sucrose in acid limes (Citrus aurantifolia) Plant Physiol. 92 168

    Article  CAS  Google Scholar 

  25. Das R N 2001 Nanocrystalline ceramics from sucrose process Mater. Lett. 47 344

    Article  CAS  Google Scholar 

  26. Wu Y, Bandyopadhyay A and Bose S 2004 Processing of alumina and zirconia nano-powders and compacts Mater. Sci. Eng. A 380 349

    Article  Google Scholar 

  27. Girardon J-S, Quinet E, Griboval-Constant A, Chernavskii P A, Gengembre L and Khodakov A Y 2007 Cobalt dispersion, reducibility, and surface sites in promoted silica-supported Fischer–Tropsch catalysts J. Catal. 248 143

    Article  CAS  Google Scholar 

  28. Ribeiro A T S, Bezerra V V L, Bartolomeu R A C, Abreu C A M, Filho N M L, Silva A O S, Maranhão L C A, Merino D, Sanz O, Montes M, Machado G and Almeid L C 2018 Influence of sucrose addition and acid treatment of silica-supported Co-Ru catalysts for Fischer–Tropsch synthesis Fuel 231 157

    Article  CAS  Google Scholar 

  29. Ha K-S, Jung G-I, Woo M-H, Jun K-W and Bae J W 2013 Effects of phosphorus and saccharide on size, shape, and reducibility of Fischer–Tropsch catalysts for slurry phase and fixed-bed reactions Appl. Catal. A 453 358

    Article  CAS  Google Scholar 

  30. Boreriboon N, Jiang X, Song C and Prasassarakich P 2018 Fe-based bimetallic catalysts supported on TiO2 for selective CO2 hydrogenation to hydrocarbons J. CO2 Util. 25 330

    Article  CAS  Google Scholar 

  31. Shi Z, Yang H, Gao P, Chen X, Liu H, Zhong L, Wang H, Wei W and Sun Y 2018 Effect of alkali metals on the performance of CoCu/TiO2 catalysts for CO2 hydrogenation to long-chain hydrocarbons Chin. J. Catal. 39 1294

    Article  CAS  Google Scholar 

  32. Grosvenor A P, Kobe B A, Biesinger M C and McIntyre N S 2004 Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds Surf. Interface Anal. 36 1564

    Article  CAS  Google Scholar 

  33. Nesbitt H W and Muir I J 1994 X-ray photoelectron spectroscopic study of a pristine pyrite surface reacted with water vapour and air Geochim. Comochim. Acta 58 4667

    Article  CAS  Google Scholar 

  34. Dry M E, Shingles T, Boshoff L J and Oosthuizen G J 1969 Heats of chemisorption on promoted iron surfaces and the role of alkali in Fischer–Tropsch synthesis J. Catal. 15 190

    Article  CAS  Google Scholar 

  35. Choi P H, Jun K-W, Lee S-J, Choi M-J and Lee K-W 1996 Hydrogenation of carbon dioxide over alumina supported Fe-K catalysts Catal. Lett. 40 115

    Article  CAS  Google Scholar 

  36. Xu L, Wang Q, Liang D, Wang X, Lin L, Cui W and Xu Y 1998 The promotions of MnO and K2O to Fe/silicalite-2 catalyst for the production of light alkenes from CO2 hydrogenation Appl. Catal. A 173 19

    Article  CAS  Google Scholar 

  37. Yan S-R, Jun K-W, Hong J-S, Choi M-J and Lee K-W 2000 Promotion effect of Fe–Cu catalyst for the hydrogenation of CO2 and application to slurry reactor Appl. Catal. A 194–195 63

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Zhejiang Provincial Natural Science Foundation of China [LY14B030003], and the National Ministry of Science and Technology of China [2014BAD02B05].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wensheng Ning.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 462 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, W., Li, B., Dai, H. et al. Influence of sugars in preparing improved FeAl catalyst for carbon dioxide hydrogenation. J Chem Sci 132, 124 (2020). https://doi.org/10.1007/s12039-020-01828-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-020-01828-8

Keywords

Navigation