Skip to main content
Log in

Spin-Phonon Magnetic Resonance of Conduction Electrons in Indium Antimonide Crystals

  • Published:
Journal of Applied Spectroscopy Aims and scope

Resonance absorption of radio waves (with a frequency of 10 MHz) by c-band electrons in indium antimonide crystals doped with hydrogen-like donors (tellurium atoms) at room temperature in an external magnetic field is theoretically studied. Known experimental data obtained for samples with electron concentrations in the range from 6∙1015 to 5∙1018 cm–3 are analyzed and interpreted. Resonant absorption of radio waves by n-InSb:Te crystals in a magnetic field is calculated to be due to spin-phonon resonance based on the law of conservation of energy and the quasi-wave vector for electrons and optical phonons. The resonance arises as a result of a spin-flip interaction of a c-band electron with an optical phonon, which is assisted by resonant absorption of radio waves in a magnetic field. A physical picture of the phenomenon is given. Analytical relations are presented. Calculations are carried out and are consistent with experimental data that could not previously be interpreted at all.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Khodaparast, R. C. Meyer, X. H. Zhang, T. Kasturiarachchi, R. E. Doezema, S. J. Chung, N. Goel, M. B. Santos, and Y. J. Wang, Phys. E, 20, Nos. 3–4, 386–391 (2004).

    Google Scholar 

  2. G. Bemski, Phys. Rev. Lett., 4, No. 2, 62–64 (1960).

    ADS  Google Scholar 

  3. M. A. Khayer and R. K. Lake, IEEE Trans. Electron Devices, 55, No. 11, 2939–2945 (2008).

    ADS  Google Scholar 

  4. O. Madelung, Semiconductors: Data Handbook, Springer, Berlin (2004).

    Google Scholar 

  5. S. Adachi, Properties of Semiconductor Alloys: Group-IV, III–V and II–VI Semiconductors, Wiley, Chippenham (2009).

    Google Scholar 

  6. Yu. M. Gal’perin, E. M. Gershenzon, I. L. Drichko, and L. B. Litvak-Gorskaya, Fiz. Tverd. Tela, 24, No. 1, 3–24 (1990).

    Google Scholar 

  7. E. O. Kane, J. Phys. Chem. Solids, 1, No. 4, 249–261 (1957).

    ADS  Google Scholar 

  8. E. Sijercic, K. Mueller, and B. Pejcinovic, Solid-State Electron., 49, No. 8, 1414–1421 (2005).

    ADS  Google Scholar 

  9. H. Kosaka, A. A. Kiselev, F. A. Baron, K. W. Kim, and E. Yablonovitch, Electron. Lett., 37, No. 7, 464–465 (2001).

    ADS  Google Scholar 

  10. R. S. Popovic, Hall Effect Devices, IOP Publishing, Bristol (2003).

    Google Scholar 

  11. M. V. Kondrat’ev, Fiz. Tverd. Tela, 19, No. 2, 616–617 (1977).

    Google Scholar 

  12. M. V. Kondrat’ev, Fiz. Tekh. Poluprovodn., 20, No. 8, 1485–1487 (1986).

    Google Scholar 

  13. N. A. Poklonskii, S. A. Vyrko, and A. G. Zabrodskii, Fi. Tverd. Tela, 46, No. 6, 1071–1075 (2004).

    Google Scholar 

  14. N. B. Brandt and S. M. Chudinov, Usp. Fiz. Nauk, 137, No. 3, 479–499 (1982).

    Google Scholar 

  15. Y.-F. Chen, M. Dobrowolska, and J. K. Furdyna, Phys. Rev. B: Condens. Matter Mater. Phys., 31, No. 12, 7989–7994 (1985).

    ADS  Google Scholar 

  16. F. Qu, J. van Veen, F. K. de Vries, A. J. A. Beukman, M. Wimmer, W. Yi, A. A. Kiselev, B.-M. Nguyen, M. Sokolich, M. J. Manfra, F. Nichele, C. M. Marcus, and L. P. Kouwenhoven, Nano Lett., 16, No. 12, 7509–7513 (2016).

    ADS  Google Scholar 

  17. M. V. Kondrat’ev, Fiz. Tekh. Poluprovodn., 13, No. 2, 382–384 (1979).

    Google Scholar 

  18. A. V. Kessenikh, Usp. Fiz. Nauk, 179, No. 7, 737–764 (2009).

    Google Scholar 

  19. V. V. Slyn’ko, E. I. Slyn’ko, A. G. Khandozhko, and Yu. K. Vygranenko, Fiz. Tekh. Poluprovodn., 31, No. 10, 1187–1191 (1997).

    Google Scholar 

  20. P. Braun and S. Grande, Phys. Status Solidi B, 72, No. 1, K73–K76 (1975).

    ADS  Google Scholar 

  21. G. Dresselhaus, A. F. Kip, and C. Kittel, Phys. Rev., 98, No. 2, 368–384 (1955).

    ADS  Google Scholar 

  22. E. I. Rashba, Usp. Fiz. Nauk, 84, No. 4, 557–578 (1964).

    Google Scholar 

  23. W. Zawadzki, Phys. Lett., 4, No. 3, 190–191 (1963).

    ADS  Google Scholar 

  24. F. G. Bass and I. B. Levinson, Zh. Eksp. Teor. Fiz., 49, No. 3 (9), 914–924 (1965).

  25. A. Yu. Matulis, Fiz. Tverd. Tela, 9, No. 8, 2238–2241 (1967).

    Google Scholar 

  26. S. T. Pavlov and Yu. A. Firsov, Zh. Eksp. Teor. Fiz., 49, No. 5 (11), 1664–1680 (1965).

  27. S. T. Pavlov and Yu. A. Firsov, Fiz. Tverd. Tela, 7, No. 9, 2634–2647 (1965).

    Google Scholar 

  28. V. A. Margulis, Fiz. Tverd. Tela, 23, No. 3, 897–899 (1981).

    Google Scholar 

  29. R. V. Parfen’ev, G. I. Kharus, I. M. Tsidil’kovskii, and S. S. Shalyt, Usp. Fiz. Nauk, 112, No. 1, 3–36 (1974).

    ADS  Google Scholar 

  30. Yu. A. Firsov, V. L. Gurevich, R. V. Parfeniev, and I. M. Tsidil’kovskii, in: Landau Level Spectroscopy (Modern Problems in Condensed Matter Science, 27.2), G. Landwehr and E. I. Rashba (Eds.), North-Holland, Amsterdam (1991), pp. 1181–1302.

  31. M. I. Kaganov and S. Klyama, Fiz. Tverd. Tela, 20, No. 8, 2360–2368 (1978).

    Google Scholar 

  32. V. I. Okulov, E. A. Pamyatnykh, and G. A. Al’shanskii, Fiz. Nizk. Temp., 35, No. 2, 194–196 (2009).

    Google Scholar 

  33. W. Zawadzki, Adv. Phys., 23, No. 3, 435–522 (1974).

    ADS  Google Scholar 

  34. K. W. Boer and U. W. Pohl, Semiconductor Physics, Springer, Berlin (2018).

    Google Scholar 

  35. R. A. Isaacson, Phys. Rev., 169, No. 2, 312–314 (1968).

    ADS  Google Scholar 

  36. A. E. Stephens, D. G. Seiler, J. R. Sybert, and H. J. Mackey, Phys. Rev. B: Solid State, 11, No. 12, 4999–5001 (1975).

    ADS  Google Scholar 

  37. A. V. Vdovin and E. M. Skok, Phys. Status Solidi B, 136, No. 2, 603–613 (1986).

    ADS  Google Scholar 

  38. L. M. Roth, B. Lax, and S. Zwerdling, Phys. Rev., 114, No. 1, 90–104 (1959).

    ADS  Google Scholar 

  39. K. L. Litvinenko, L. Nikzad, C. R. Pidgeon, J. Allam, L. F. Cohen, T. Ashley, M. Emeny, W. Zawadzki, and B. N. Murdin, Phys. Rev. B: Condens. Matter Mater. Phys., 77, No. 3, 033204(1–4) (2008).

  40. J. Winter, Magnetic Resonance in Metals, Oxford University Press, New York (1971), 206 pp.

    Google Scholar 

  41. N. A. Poklonskii, S. A. Vyrko, O. N. Poklonskaya, N. M. Lapchuk, and S. Munkhtsetseg, Zh. Prikl. Spektrosk., 80, No. 3, 379–384 (2013) [N. A. Poklonski, S. A. Vyrko, O. N. Poklonskaya, N. M. Lapchuk, and S. Munkhtsetseg, J. Appl. Spectrosc., 80, 366–371 (2013)].

  42. A. A. Ovchinnikov, Elektrokhimiya, 39, No. 1, 19–23 (2003).

    Google Scholar 

  43. A. V. Timofeev, Usp. Fiz. Nauk, 176, No. 11, 1227–1236 (2006).

    Google Scholar 

  44. V. V. Kosarev, N. A. Red’ko, and V. I. Belitskii, Zh. Eksp. Teor. Fiz., 100, No. 2 (8), 492–509 (1991).

  45. B. A. Aronzon and I. M. Tsidilkovskii, Phys. Status Solidi B, 157, No. 1, 17–59 (1990).

    ADS  Google Scholar 

  46. An. V. Vinogradov, Zh. Eksp. Teor. Fiz., 70, No. 3, 999–1008 (1976).

    ADS  Google Scholar 

  47. A. I. Veinger, A. G. Zabrodskii, T. V. Tisnek, and G. Biskupski, Fiz. Tekh. Poluprovodn., 32, No. 5, 557–563 (1998).

    Google Scholar 

  48. N. A. Poklonski, S. A. Vyrko, A. I. Kovalev, and A. N. Dzeraviaha, J. Phys. Commun., 2, No. 1, 015013(1–14) (2018).

  49. N. A. Poklonskii, S. A. Vyrko, and A. N. Derevyago, Zh. Belarus. Gos Univ. Fiz., No. 2, 28–41 (2020).

    Google Scholar 

  50. L. B. Ioffe and A. I. Larkin, Zh. Eksp. Teor. Fiz., 81, No. 3 (9), 1048–1057 (1981).

  51. N. A. Poklonskii and S. A. Vyrko, Zh. Prikl. Spektrosk., 69, No. 3, 375–382 (2002) [N. A. Poklonski and S. A. Vyrko, J. Appl. Spectrosc., 69, 434–443 (2002)].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Poklonski.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 87, No. 4, pp. 595–604, July–August, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poklonski, N.A., Dzeraviaha, A.N. & Vyrko, S.A. Spin-Phonon Magnetic Resonance of Conduction Electrons in Indium Antimonide Crystals. J Appl Spectrosc 87, 652–661 (2020). https://doi.org/10.1007/s10812-020-01050-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-020-01050-x

Keywords

Navigation