Skip to main content
Log in

Analysis of Nonmetallic Constituents of Lubricating Oil Using Indirect Ablation Laser-Induced Breakdown Spectroscopy

  • Published:
Journal of Applied Spectroscopy Aims and scope

Indirect ablation laser-induced breakdown spectroscopy (IA-LIBS) was applied to the analysis of the nonmetallic constituents of engine oil and considered as a feasible technique for the evaluation of the consumption and/or combustion of engine oil during routine engine operation. The evolution of CN emission and C2 emission was investigated for different driving time intervals of the motor. The exponentially decaying curve showed that the intensity of CN emission and C2 emission decayed at different driving time intervals. The evolution of total CN emission and C2 emission was analyzed, and the ratio of CN to C2 was calculated, which might be taken as an indicator to evaluate the performance of the used engine oils and/or to diagnose the conditions of the motor engine. Thus, it is shown that IA-LIBS is a potential method for analyzing the metallic and nonmetallic constituents of engine oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. McElroy, A. Mennito, E. Debrah, and R. Thomas, Spectroscopy, 13, No. 2, 42 (1998).

    Google Scholar 

  2. A. W. Varnes, Spectroscopy, 1, 28 (1985).

    Google Scholar 

  3. I. M. Goncalves, M. Murillo, and A. M. Gonzalez, Talanta, 47, No. 4, 1033 (1998).

    Article  Google Scholar 

  4. I. Y. Elnasharty, A. K. Kassem, M. Sabsabi, and M. A. Harith, Spectrochim. Acta B, 66, No. 8, 588 (2011).

    Article  ADS  Google Scholar 

  5. R. K. Hewstone, Sci. Total. Environ., 156, No. 3, 255 (1994).

    Article  ADS  Google Scholar 

  6. R. Vazquez-Duhalt, Sci. Total. Environ., 79, No. 1, 1 (1989).

    Article  ADS  Google Scholar 

  7. K. J. Eisentraut, R. W. Newman, C. S. Saba, R. E. Kauffman, and W. E. Rhine, Anal. Chem., 56, No. 9, 1086A (1984).

    Google Scholar 

  8. B. F. Reis, M. Knochen, G. Pignalosa, N. Cabrera, and J. Giglio, Talanta, 64, No. 5, 1220 (2004).

    Article  Google Scholar 

  9. A. V. Zmozinski, A. de Jesus, M. G. R. Vale, and M. M. Silva, Talanta, 83, No. 2, 637 (2010).

    Article  Google Scholar 

  10. R. M. Souza, C. L. P. da Silveira, and R. Q. Aucélio, Anal. Sci., 20, No. 2, 351 (2004).

    Article  Google Scholar 

  11. G. M. Mastoi, M. Y. Khuhawar, and R. B. Bozdar, J. Quant. Spectrosc. Radiat. Transf., 102, No. 2, 236 (2006).

    Article  ADS  Google Scholar 

  12. M. P. Escobar, B. W. Smith, and J. D. Winefordner, Anal. Chim. Acta, 320, No. 1, 11 (1996).

    Article  Google Scholar 

  13. P. Celio, C. Juliana, M. C. S. Lucas, and B. G. Fabinao, J. Braz. Chem. Soc., 18, No. 3, 463 (2007).

    Article  Google Scholar 

  14. A. De Giacomo, M. Dell’Aglio, O. De Pascale, and M. Capitelli, Spectrochim. Acta B, 62, No. 8, 721 (2007).

    Article  ADS  Google Scholar 

  15. P. Fichet, P. Mauchien, J. F. Wagner, and C. Moulin, Anal. Chim. Acta, 429, No. 2, 269 (2001).

    Article  Google Scholar 

  16. P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, Spectrochim. Acta B, 60, No. 11, 1482 (2005).

    Article  ADS  Google Scholar 

  17. C. A. D’Angelo, M. Garcimuño, D. M. D. Pace, and G. Bertuccellil, J. Quant. Spectrosc. Radiat. Transf., 164, No. 10, 89 (2015).

    Article  ADS  Google Scholar 

  18. F. Boué-Bigne, Spectrochim. Acta B, 63, No. 10, 1122 (2008).

    Article  ADS  Google Scholar 

  19. J. Kaiser, M. Galiová, K. Novotný, R. Červenk, L. Reale, J. Novotný, M. Liška, O. Samek, V. Kanický, A. Hrdličk, K. Stejskal, V. Adam, and R. Kizek, Spectrochim. Acta B, 64, No. 1, 67 (2009).

    Article  ADS  Google Scholar 

  20. F. J. Fortes, T. Ctvrtnícková, M. P. Mateo, L. M. Cabalín, G. Nicolas, and J. J. Laserna, Anal. Chim. Acta, 683, No. 1, 52 (2010).

    Article  Google Scholar 

  21. J. S. Xiu, X. S. Bai, E. Negre, V. Motto-Ros, and J. Yu, Appl. Phys. Lett., 102, No. 24, 2441011 (2013).

    Article  Google Scholar 

  22. J. S. Xiu, V. Motto-Ros, G. Panczer, R. E. Zheng, and J. Yu, Spectrochim. Acta B, 91, No. 1, 24 (2014).

    Article  Google Scholar 

  23. L. J. Zheng, F. Cao, J. S. Xiu, X. S. Bai, V. Motto-Ros, G. Nicole, H. P. Zeng, and J. Yu, Spectrochim. Acta B, 99, No. 9, 1 (2014).

    ADS  Google Scholar 

  24. J. S. Xiu, L. L. Dong, H. Qin, Y. Y. Liu, and J. Yu, Appl. Spectrosc., 70, No. 12, 2016 (2016).

    Article  ADS  Google Scholar 

  25. J. S. Xiu, S. M. Liu, M. L. Sun, and L. L. Dong, Appl. Opt., 57, No. 3, 404 (2018).

    Article  ADS  Google Scholar 

  26. M. A. Al-Ghouti and L. Al-Atoum, J. Environ. Manage., 90, 187 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Xiu.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 87, No. 4, p. 677, July–August, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiu, J., Liu, S., Dong, L. et al. Analysis of Nonmetallic Constituents of Lubricating Oil Using Indirect Ablation Laser-Induced Breakdown Spectroscopy. J Appl Spectrosc 87, 729–735 (2020). https://doi.org/10.1007/s10812-020-01062-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-020-01062-7

Keywords

Navigation