Skip to main content
Log in

Quantum-Cascade Lasers in Atmospheric Optical Communication Lines: Challenges and Prospects (Review)

  • Published:
Journal of Applied Spectroscopy Aims and scope

The parameters of prospective samples of atmospheric optical communication lines (AOCL) or free-space optics (FSO) based on quantum-cascade lasers (QCL) as compared to those of existing commercial systems are analyzed. The results indicate that the use of QCL in FSO has significant advantages over existing systems, due largely to longwave radiation and the QCL modulation dynamics, which are limited by the picosecond lifetime of current carriers that provides the fundamental possibility of obtaining an inherent bandwidth of ≥100 GHz. Possible applications of FSO based on IR QCL and THz QCL are discussed taking into account the experimental data and unique properties of QCL radiation. Also, the use of non-traditional methods to eliminate the influence of turbulence and increase the capacity of the information transmission channel is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Martini and E. A. Whittaker, in: Free-Space Laser Communications, Springer, New York (2005), pp. 393–406.

    Google Scholar 

  2. F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. Sivco, J. Baillargeon, A. Y. Cho, and H. C. Liu, IEEE J. Sel. Top. Quantum Electron., 6, No. 6, 931–947 (2000).

    ADS  Google Scholar 

  3. A. Vats, H. Kaushal, and V. K. Jain. Int. Conf. Telecommunication and Networking (TELNET 2013), February 2013, Amity University, Noida (2013).

  4. J. Mikolajczyk, Z. Bielecki, M. Bugajski, J. Piotrowski, J. Wojtas, W. Gawron, D. Szabra, and A. Prokopiuk, Metrol. Meas. Syst., 24, No. 4, 653–674 (2017).

    Google Scholar 

  5. F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. Myers, M. Taubman, R. Williams, C. Bethea, K. Unterrainer, H. Hwang, D. Sivco, Y. Cho, A. Sergent, C. Liu, and E. Whittaker, IEEE J. Quantum Electron., 38, No. 6, 511–532 (2002).

    ADS  Google Scholar 

  6. J. Mikolajczyk, Int. J. Electron. Telecommun., 60, No. 3, 259–264 (2014).

    Google Scholar 

  7. S. M. Johnson, E. Dial, and M. Razeghi, in: Proc. SPIE 11288, Quantum Sensing and Nano Electronics and Photonics XVII, Int. Soc. Opt. Photon. (2020), 1128814.

  8. V. W. Chan, J. Lightwave Technol., 24, No. 12, 4750–4762 (2006).

    ADS  Google Scholar 

  9. M. A. Khalighi and M. Uysal, IEEE Commun. Surv. Tutorials, 16, No. 4, 2231–2258 (2014).

    Google Scholar 

  10. D. M. Forin, G. Incerti, G. T. Beleffi , A. L. J. Teixeira, L. N. Costa, P. D. B. Andre, B. Geiger, E. Leitgeb, and F. Nadeem, in: Trends in Telecommunications Technologies, IntechOpen (2010), pp. 257–296.

  11. M. Uysal, J. Li, and M. Yu, Trans. Wireless Commun., 5, No. 6, 1229–1233 (2006).

    Google Scholar 

  12. H. Henniger and O. Wilfert, Radioengineering, 19, No. 2, 203–212 (2010).

    Google Scholar 

  13. M. Vitiello, G. Scalari, B. Williams, and B. Natale, Opt. Express, 23, No. 4, 5167–5182 (2015).

    ADS  Google Scholar 

  14. M. Razeghi, Q. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, Opt. Express, 23, No. 7, 8462–8475 (2015).

    ADS  Google Scholar 

  15. R. Curl, F. Capasso, C. Gmachl, A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. Tittel, Chem. Phys. Lett., 487, 1–18 (2010).

    ADS  Google Scholar 

  16. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pfl ugl, L. Diehl, Q. Wang, F. Capasso, and K. C. N. Patel, Appl. Phys. Lett., 95, No. 14, 14113-1–14113-9 (2009).

    Google Scholar 

  17. M. I. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, and E. Kapon, New J. Phys., 11, No. 12, 125022–125041 (2009).

    ADS  Google Scholar 

  18. J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, and S. Blaser, IEEE J. Quantum Electron., 38, No. 6, 533–546 (2002).

    ADS  Google Scholar 

  19. A. Tredicucci, F. Capasso, C. Gmachl, D. Sivco, A. Hutchinson, and A. Cho, Appl. Phys. Lett., 73, No. 15, 2101–2103 (1998).

    ADS  Google Scholar 

  20. J. Faist, M. Beck, T. Aellen, and E. Gini, Appl. Phys. Lett., 78, No. 2, 147–149 (2001).

    ADS  Google Scholar 

  21. M. Belkin and F. Capasso, Phys. Scr., 90, No. 1, 118002–13 (2015).

    ADS  Google Scholar 

  22. B. Williams, S. Kumar, Q. Hu, and J. Reno, Electron. Lett., 42, No. 2, 89–91 (2006).

    ADS  Google Scholar 

  23. A. Lee, B. Williams, S. Kumar, Q. Hu, and J. Reno, Opt. Lett., 7, No. 35, 910–912 (2010).

    ADS  Google Scholar 

  24. B. Williams, Nat. Photonics, 1, No. 9, 517 (2007).

    ADS  Google Scholar 

  25. P. I. Abramov, E. V. Kuznetsov, and L. A. Skvortsov, Opt. Zh., 84, No. 5, (2017) [P. I. Abramov, E. V. Kuznetsov, and L. A. Skvortsov, J. Opt. Technol., 84, No. 5, 331–341 (2017)].

  26. M. Dongdong, Z. Hongbo, Li Mingshan, Lin Weiran, Shen Zhaoguo, Zhang Jie, and Fan Zhongwei, Infrared Laser Eng., 47, No. 11, 1105009 (2018).

    Google Scholar 

  27. S. Li, Z. Wu, F. Wu, G. Zhou, X. Bi, C. An, Q. Liu, R. Yang, J. Wang, Yu Li, J. Cai, and X. Yan, in: Proc. SPIE 11170, 14th Nat. Conf. Laser Technol. Optoelectron. (LTO 2019), Int. Soc. Opt. Photon. (2019), 111702Z.

  28. S. Slivken and M. Razeghi, in: Proc. SPIE 10926, Quantum Sensing and Nano Electronics and Photonics XVI, Int. Soc. Opt. Photon. (2019), 1092611.

  29. S. Li, R. Yang, F. Wu, G. Zhou, X. Bi, C. An, Q. Liu, J. Wang, Z. Wu, J. Cai, and X. Yan, in: Proc. SPIE 11182, Semicond. Lasers Appl. IX, Int. Soc. Opt. Photon. (2019), 11182 0Y [11182–34].

  30. F. Munzhuber and R. G. Speer, in: Proc. SPIE 10797, Technologies for Optical Countermeasures XV, Int. Soc. Opt. Photon. (2018), 107970M.

  31. G. D. Lewis, C. N. Santos, and M. Vandewal, in: Proc. SPIE 11161, Technologies for Optical Countermeasures XVI, Int. Soc. Opt. Photon. (2019), 1116108.

  32. O. Spitz, A. Herdt, J. Wu, G. Maisons, M. Carras, C. W. Wong, F. Elsaesser, and F. Grillot, in: Proc. SPIE 11288, Quantum Sensing and Nano Electronics and Photonics XVII, Int. Soc. Opt. Photon. (2020), 112880A.

  33. L. A. Skvortsov and E. M. Maksimov, Kvantovaya Elektron. (Moscow), 40, No. 7, 565–578 (2010) [L. A. Skvortsov and E. M. Maksimov, Quantum Electron. (Moscow), 40, No. 7, 565–578 (2010)].

  34. L. A. Skvortsov, Kvantovaya Elektron. (Moscow), 41, No. 12, 1051–1060 (2011) [L. A. Skvortsov, Quantum Electron. (Moscow), 41, No. 12, 1051–1060 (2011)].

  35. L. A. Skvortsov, Kvantovaya Elektron. (Moscow), 42, No. 1, 1–11 (2012) [L. A. Skvortsov, Quantum Electron. (Moscow), 42, No. 1, 1–11 (2012)].

  36. C. Bauer, U. Willer, and W. Schade, Opt. Eng., 49, No. 11, 111126 (2010).

    ADS  Google Scholar 

  37. X. Chen, D. Guo, F. S. Choa, C. C. Wang, S. Trivedi, A. P. Snyder, G. Ru, and J. Fan, Appl. Opt., 52, No. 12, 2626–2632 (2013).

    ADS  Google Scholar 

  38. A. Mukherjee, S. Von der Porten, and C. K. N. Patel, Appl. Opt., 49, No. 11, 2072–2078 (2010).

    ADS  Google Scholar 

  39. C. A. Kendziora, R. Furstenberg, M. Papantonakis, V. Nguyen, J. Byers, and R. McGill, Appl. Opt., 54, No. 31, F129–F138 (2015).

    Google Scholar 

  40. J. D. Suter, B. Bernacki, and M. C. Phillips, Appl. Phys. B: Lasers Opt., 108, No. 4, 965–974 (2012).

    ADS  Google Scholar 

  41. P. I. Abramov, E. V. Kuznetsov, L. A. Skvortsov, and M. I. Skvortsova, Zh. Prikl. Spektrosk., 86, No. 1, 5–32 (2019) [P. I. Abramov, E. V. Kuznetsov, L. A. Skvortsov, and M. I. Skvortsova, J. Appl. Spectrosc., 86, No. 1, 1–26 (2019)].

  42. K. Hashimura, K. Ishii, and K. Awazu, Jpn. J. Appl. Phys., 54, No. 11, 112701 (2015).

    ADS  Google Scholar 

  43. N. Masaki and S. Okazaki, Biomed. Opt. Express, 9, No. 5, 2095–2103 (2018).

    Google Scholar 

  44. K. Hashimura, K. Ishii, and K. Awazu, Opt. Rev., 23, No. 2, 299–306 (2016).

    Google Scholar 

  45. M. J. Pilling, A. Henderson, and P. Gardner, Anal. Chem., 89, No. 14, 7348–7355 (2017).

    Google Scholar 

  46. K. Worle, F. Seichter, A. Wilk, C. Armacost, T. Day, M. Godejohann, U. Wachter, J. Vogt, P. Radermacher, and B. Mizaikoff, Anal. Chem., 85, No. 5, 2697–2702 (2013).

    Google Scholar 

  47. A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, Appl. Phys. B: Lasers Opt., 90, No. 2, 165–176 (2008).

    ADS  Google Scholar 

  48. A. A. Kosterev and F. K. Tittel, IEEE J. Quantum Electron., 38, No. 6, 582–591 (2002).

    ADS  Google Scholar 

  49. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wisocki, and F. K. Tittel, Chem. Phys. Lett., 487, No. 1–3, 1–18 (2010).

    ADS  Google Scholar 

  50. G. N. Rao and A. Karpf, Appl. Opt., 50, No. 4, A100–A115 (2011).

    ADS  Google Scholar 

  51. L. Zhang, G. Tian, J. Li, and B. Yu, Appl. Spectrosc., 68, No. 10, 1095–1107 (2014).

    ADS  Google Scholar 

  52. G. Wysocki, Y. Bakhirkin, S. So, F. K. Tittel, C. J. Hill, R. Q. Yang, and M. P. Fraser, Appl. Opt., 46, No. 33, 8202–8210 (2007).

    ADS  Google Scholar 

  53. B. A. Paldus, T. G. Spence, R. N. Zare, J. Oomens, F. J. M. Harren, D. H. Parker, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, Opt. Lett., 24, No. 3, 178–180 (1999).

    ADS  Google Scholar 

  54. B. A. Paldus, C. C. Harb, T. G. Spence, R. N. Zare, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, Opt. Lett., 25, No. 9, 666–668 (2000).

    ADS  Google Scholar 

  55. G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofl er, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, Appl. Phys. B: Lasers Opt., 92, No. 3, 305–311 (2008).

    ADS  Google Scholar 

  56. Y. Wang, M. G. Soskind, W. Wang, and G. Wysocki, Appl. Phys. Lett., 104, No. 3, 031114 (2014).

    ADS  Google Scholar 

  57. L. Zhang, G. Tian, J. Li, and B. Yu, Appl. Spectrosc., 68, No. 10, 1095–1107 (2014).

    ADS  Google Scholar 

  58. A. Schwaighofer, M. Brandstetter, and B. Lendl, Chem. Soc. Rev., 46, No. 19, 5903–5924 (2017).

    Google Scholar 

  59. H. W. Hubers, R. Eichholz, S. G. Pavlov, and H. Richter, J. Infrared, Millimeter, Terahertz Waves, 34, No. 5–6, 325–341 (2013).

    Google Scholar 

  60. B. Roben, X. Lu, K. Biermann, L. Schrottke, and H. T. Grahn, J. Appl. Phys., 125, No. 15, 151613 (2019).

    ADS  Google Scholar 

  61. N. J. Galan-Freyle, M. L. Ospina-Castro, A. R. Medina-Gonzalez, R. Villarreal-Gonzalez, S. P. Hernandez-Rivera, and L. C. Pacheco-Londono, Appl. Sci., 10, No. 4, 1319 (2020).

    Google Scholar 

  62. https://commons.wikimedia.org/wiki/File:Atmosfaerisk_spredning–ru.svg.

  63. K. J. Linden, W. R. Neal, J. Waldman, A. J. Gatesman, and A. Danylov, in: 34th Applied Imagery and Pattern Recognition Workshop (AIPR'05), Washington, DC (2005), pp. 8–14.

  64. C. P. Colvero, M. C. R. Cordeiro, and J. P. von der Weid, Electron. Lett., 41, No. 10, 610 (2005).

    ADS  Google Scholar 

  65. E. Korevaar, I. Kim, and B. McArthur, Proc. SPIE 4873, Opt. Wireless Commun. V (2002), p. 155.

  66. P. W. Kruse, L. D. McGlauchlin, and R. B. McQuistan, Elements of Infrared Technology: Generation, Transmission, and Detection, John Wiley & Sons, New York (1962).

    Google Scholar 

  67. E. J. McCartney, Optics of the Atmosphere Scattering by Molecules and Particles, John Wiley & Sons, New York (1976).

    Google Scholar 

  68. P. Corrigan, R. Martini, E. A. Whittaker, and C. Bethea, Opt. Express, 17, No. 6, 4355–4359 (2009).

    ADS  Google Scholar 

  69. R. B. Stull, Atmospheric Sciences Library: An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers (1988).

  70. E. Luzhansky, F. S. Choa, S. Merritt, A. Yu, and M. Krainak, in: Proc. SPIE 9465, Laser Radar Technology and Applications XX; and Atmospheric Propagation XII, Int. Soc. Opt. Photon., May (2015), 946512.

  71. A. N. Zaki Rashed and H. A. Sharshar, Int. J. Adv. Res. Electron. Commun. Eng., 3, No. 3, 261–272 (2014).

    Google Scholar 

  72. G. P. Berman, A. A. Chumak, and V. N. Gorshkov, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 76, No. 5, 056606-1–056606-7 (2007).

    ADS  Google Scholar 

  73. F. Zocchi, Opt. Commun., 248, 359 (2005).

    ADS  Google Scholar 

  74. Y. Wang, H. Xu, D. Li, R. Wang, C. Jin, X. Yin, S. Gao, Q. Mu, Li Xuan, and Z. Cao, Sci. Rep., 8, 1124–1135 (2018).

    ADS  Google Scholar 

  75. K. Kazaura, K. Omae, T. Suzuki, M. Matsumoto, T. Sato, K. Asatani, M. Hatori, T. Murakami, K. Takahashi, H. Matsumoto, K. Wakamori, Y. Arimoto, and K. Wakamori, in: Proc. SPIE 6105, Free-Space Laser Communication Technologies XVIII, Int. Soc. Opt. Photon., March (2006), 61050N.

  76. H. Willebrand and B. Ghuman, Free Space Optics: Enabling Optical Connectivity in Today′s Networks, Sams Publishing, Indianapolis, Indiana USA (2002).

  77. M. Grabherr, M. Miller, R. Jager, D. Wiedenmann, and R. King, in: Proc. SPIE 5364, Vertical-Cavity Surface-Emitting Lasers VIII, Int. Soc. Opt. Photon., June (2004), pp. 174–182.

  78. G. Soni and J. Malhotra, Int. J. Comput. Corporate Res., 1, No. 4, 24–47 (2011).

    Google Scholar 

  79. R. Martini, C. Bethea, F. Capasso, C. Gmachl, R. Paiella, E. A. Whittaker, C. Gmashl, R. Paiella, H. Y. Hwang, D. K. Sivco, J. N. Baillargeon, and A. J. Cho, Electron. Lett., 38, No. 4, 181–183 (2002).

    ADS  Google Scholar 

  80. F. Capasso, R. Colombelli, R. Paiella, C. Gmachl, A. Tredicucci, D. L. Sivco, and A. Y. Cho, Opt. Photonics News, 12, 41–46 (2001).

    ADS  Google Scholar 

  81. F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, Phys. Today, 55, 34–40 (2002).

    ADS  Google Scholar 

  82. J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, and A. Y. Cho, in: Quantum Cascade Lasers in Intersubband Transition in Quantum Wells: Physics and Device Application II, H. C. Liu and F. Capasso (Eds.), New York, Academic, Chap. VIII (2000).

  83. C. Y. L. Cheung and K. A. Shore, J. Mod. Opt., 45, 1219–1221 (1998).

    ADS  Google Scholar 

  84. D. M. Chate and T. S. Pranesha, J. Aerosol Sci., 35, 695–706 (2004).

    ADS  Google Scholar 

  85. E. Luzhanskiy, F. S. Choa, S. Merritt, A. Yu, and M. Krainak, Low Size, Weight and Power Concept for Mid-Wave Infrared Optical Communication Transceivers Based on Quantum Cascade Lasers, preprint, NASA (2015).

  86. E. Luzhansky, F. S. Choa, S. Merritt, A. Yu, and M. Krainak, in: Proc. SPIE 9465, Laser Radar Technology and Applications XX; and Atmospheric Propagation XII, Int. Soc. Opt. Photon., May (2015), 946512.

  87. E. Luzhansky, F. S. Choa, S. Merritt, A. Yu, and M. Krainak, in: Applications of Lasers for Sensing and Free Space Communications, JT5A-7, Opt. Soc. Am., June (2015).

  88. S. Thomas, Proc. SPIE 5490, Advancements in Adaptive Optics, (2004), p. 766.

  89. B. Moision and J. Hamkins, "Coded Modulation for the Deep-Space Optical Channel: Serially Concatenated Pulse-Position Modulation," IPN Progress Report 42–161, May 15 (2005).

  90. A. Rogalski, Prog. Quantum Electron., 27, Nos. 2–3, 59–210 (2003).

    ADS  Google Scholar 

  91. J. J. Fernandes, P. A. Watson, and J. C. Neves, IEEE Commun. Mag., 32, No. 8, 68–73 (1994).

    Google Scholar 

  92. A. Rogalski and F. Sizov, Opto-Electron. Rev., 19, No. 3, 346–404 (2011).

    ADS  Google Scholar 

  93. J. Eckhardt, IEEE 802.15-19-0279-00-0thz, July 2019. [Online]. Available: https://mentor.ieee.org/802.15/dcn/19/15-19-0279-00-0thz-low-thz-band-propagation-measurements-forbeyond-5g-vehicular-communications.pdf

  94. I. F. Akyildiz, C. Han, and S. Nie, IEEE Commun. Mag., 56, No. 6, 102–108 (2018).

    Google Scholar 

  95. P. D. Grant, S. R. Laframboise, R. Dudek, M. Graf, A. Bezinger, and H. C. Liu, Electron. Lett., 45, No. 18, 952–954 (2009).

    ADS  Google Scholar 

  96. Z. Chen, Z. Y. Tan, Y. J. Han, R. Zhang, X. G. Guo, H. Li, J. C. Cao, and H. C. Liu, Electron. Lett., 47, No. 17, 1002–1004 (2011).

    ADS  Google Scholar 

  97. H. Kanaya, R. Sogabe, T. Maekawa, S. Suzuki, and M. Asada, J. Infrared, Millimeter, Terahertz Waves, 35, No. 5, 425–431 (2014).

    Google Scholar 

  98. H. Elayan, O. Amin, B. Shihada, R. M. Shubair, and M. S. Alouini, IEEE Open J. Commun. Soc., 1, 1–32 (2019).

    Google Scholar 

  99. S. Chinchali, A. Sharma, J. Harrison, A. Elhafsi, D. Kang, E. Pergament, E. Cidon, S. Katti, and M. Pavone, Network Offloading Policies for Cloud Robotics: A Learning-Based Approach, February 2019, arXiv:1902.05703 [Online]. Available: https://arxiv.org/abs/1902.05703.

  100. G. Z. Yang, J. Bellingham, P. E. Dupont, P. Fischer, L. Floridi, R. Full, N. Jacobstein, M. McNutt, R. Merrifi eld, B. J. Nelson, B. Scassellati, M. Taddeo, R. Taylor, M. Z. Lin Wang, and R. Wood, Sci. Rob., 3, No. 14, 7650–7664 (2018).

    Google Scholar 

  101. M. Chen, Y. Tian, G. Fortino, J. Zhang, and I. Humar, Comput. Commun., 120, 58–70 (2018).

    Google Scholar 

  102. L. A. Skvortsov, Zh. Prikl. Spektrosk., 81, No. 5, 653–678 (2014) [L. A. Skvortsov, J. Appl. Spectrosc., 81, No. 5, 725–749 (2014)].

  103. H. Aggrawal, P. Chen, M. Assefzadeh, B. Jamali, and A. Babakhani, IEEE Microwave Mag., 17, No. 12, 24–38 (2016).

    Google Scholar 

  104. M. Tonouchi, Nat. Photonics, 1, No. 2, 97–105 (2007).

    ADS  Google Scholar 

  105. X.-F. Teng, Y.-T. Zhang, C.C.Y. Poon, and P. Bonato, IEEE Rev. Biomed. Eng., 1, No. 1, 62–74 (2008).

    Google Scholar 

  106. D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, Appl. Phys. B: Lasers Opt., 67, No. 3, 379–390 (1998).

    ADS  Google Scholar 

  107. M. J. W. Rodwell, Y. Fang, J. Rode, J. Wu, B. Markman, S. T. S. Brunelli, J. Klamkin, and M. Urteaga, IEDM Tech. Dig., 14.3.1–14.3.4 (2018).

  108. D. M. Mittleman, Opt. Express, 26, No. 8, 9417–9431 (2018).

    ADS  Google Scholar 

  109. M. Aladsani, A. Alkhateeb, and G. C. Trichopoulos, Proc. IEEE Int. Conf. Acoust., Speech Signal Process (ICASSP), May 2019 (2019), pp. 4539–4543.

  110. T. Rappaport, Y. Xing, G. R. MacCartney, A. F. Molisch, Jr., E. Mellios, and J. Zhang, IEEE Trans. Antennas Propag., 65, No. 12, 6213–6230 (2017).

    ADS  Google Scholar 

  111. I. F. Akyildiz, J. M. Jornet, and C. Han, Phys. Commun., 1, No. 12, 16–32 (2014).

    Google Scholar 

  112. V. Petrov, D. Moltchanov, and Y. Koucheryavy, Proc. IEEE Int. Conf. Commun. (ICC), May 2016 (2016), pp. 1–7.

  113. V. Petrov, A. Pyattaev, D. Moltchanov, and Y. Koucheryavy, Proc. 8th Int. Cong. Ultra Modern Telecommun. Control Syst. Workshops (ICUMT), Oct. 2016, (2016), pp. 183–190.

  114. S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, Nat. Photonics, 1, No. 7, 977–981 (2013).

    ADS  Google Scholar 

  115. T. S. Rappaport, 6G and beyond: Terahertz Communications and Sensing, 2019 Brooklyn 5G Summit Keynote, Apr. 2019 [Online]. Available: https://ieeetv.ieee.org/conference-highlights/keynote-ted-rappaport-terahertzcommunication-b5gs-2019?.

  116. M. Aladsani, A. Alkhateeb, and G. C. Trichopoulos, Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), May 2019 (2019), pp. 4539–4543.

  117. O. Kanhere and T. S. Rappaport, Proc. IEEE Global Commun. Conf., Dec. 2018 (2018), pp. 206–212.

  118. C. Paterson, Phys. Rev. Lett., 94, No. 15, 153901 (2005).

    ADS  Google Scholar 

  119. G. A. Tyler and R. W. Boyd, Opt. Lett., 34, No. 2, 142–144 (2009).

    ADS  Google Scholar 

  120. N. Chandrasekaran and J. H. Shapiro, J. Lightwave Technol., 32, No. 6, 1075–1087 (2014).

    ADS  Google Scholar 

  121. F. S. Roux, T. Wellens, and V. N. Shatokhin, Phys. Rev. A: At., Mol., Opt. Phys., 92, No. 1, 012326 (2015).

    Google Scholar 

  122. H. Avetisyan and C. H. Monken, Opt. Express, 24, No. 3, 2318–2335 (2016).

    ADS  Google Scholar 

  123. C. Chen, H. Yang, S. Tong, and Y. Lou, Opt. Express, 24, No. 7, 6959–6975 (2016).

    ADS  Google Scholar 

  124. N. D. Leonhard, V. N. Shatokhin, and A. Buchleitner, Phys. Rev. A: At., Mol., Opt. Phys., 91, No. 1, 012345 (2015).

    ADS  Google Scholar 

  125. B. J. Pors, C. H. Monken, E. R. Eliel, and J. P. Woerdman, Opt. Express, 19, No. 7, 6671–6683 (2011).

    ADS  Google Scholar 

  126. M. Malik, M. O'Sullivan, B. Rodenburg, M. Mirhosseini, J. Leach, M. P. Lavery, M. J. Padgett, and R. W. Boyd, Opt. Express, 20, No. 12, 13195–13200 (2012).

    ADS  Google Scholar 

  127. A. H. Ibrahim, F. S. Roux, M. McLaren, T. Konrad, and A. Forbes, Phys. Rev. A: At., Mol., Opt. Phys., 88, No. 1, 012312 (2013).

    ADS  Google Scholar 

  128. Y. Ren, H. Huang, G. Xie, N. Ahmed, Y. Yan, B. I. Erkmen, N. Chandrasekaran, M. P. J. Lavery, N. K. Steinhoff, M. Tur, S. Dolinar, M. Neifeld, M. J. Padgett, R. W. Boyd, J. H. Shapiro, and A. E. Willner, Opt. Lett., 38, No. 20, 4062–4065 (2013).

    ADS  Google Scholar 

  129. B. Rodenburg, M. Mirhosseini, M. Malik, O. S. Magana-Loaiza, M. Yanakas, L. Maher, N. K. Steinhoff, G. A. Tyler, and R. W. Boyd, New J. Phys., 16, No. 3, 033020 (2014).

    ADS  Google Scholar 

  130. G. Xie, L. Li, Y. Ren, H. Huang, Y. Yan, N. Ahmed, Z. Zhao, M. P. J. Lavery, N. Ashrafi , S. Ashrafi , R. Bock, M. Tur, A. F. Molisch, and A. E. Willner, Optica, 2, No. 4, 3357–3365 (2015).

    Google Scholar 

  131. B. A. Knyazev and V. G. Serbo, Usp. Fiz. Nauk, 188, No. 5, 508–539 (2018) [B. A Knyazev and V. G. Serbo, Phys.-Usp., 61, No. 5, 449–479 (2018)].

  132. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A: At., Mol., Opt. Phys., 45, No. 11, 8185 (1992).

    ADS  Google Scholar 

  133. M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Urssin, and A. Zeilinger, New J. Phys., 16, No. 11, 113028 (2014).

    Google Scholar 

  134. M. Krenn, J. Handsteiner, M. Fink, R. Fickler, R. Ursin, M. Malik, and A. Zeilinger, Proc. Nat. Acad. Sci. USA, 113, No. 48, 13648–13653 (2016).

    ADS  Google Scholar 

  135. M. Krenn, J. Handsteiner, M. Fink, R. Fickler, and A. Zeilinger, Proc. Natl. Acad. Sci. USA, 112, No. 46, 14197–14201 (2015).

    ADS  Google Scholar 

  136. C. F. Bohren and B. A. Albrecht, Atmospheric Thermodynamics, Oxford Univ. Press, New York (1988).

  137. G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, and S. Franke-Arnold, Opt. Express, 12, No. 22, 5448–5456 (2004).

    ADS  Google Scholar 

  138. J. Wang, Yang Jeng–Yuan, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, Nat. Photonics, 6, No. 7, 488–496 (2012).

    ADS  Google Scholar 

  139. H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. J. Lavery, M. J. Padgett, M. Tur, and A. E. Willner, Opt. Lett., 39, No. 2, 197–200 (2014).

    ADS  Google Scholar 

  140. G. Milione, M. P. J. Lavery, H. Huang, Y. Ren, G. Xie, T. A. Nguyen, E. Karimi, L. Marrucci, D. A. Nolan, R. R. Alfano, and A. E. Willner, Opt. Lett., 40, No. 9, 1980–1983 (2015).

    ADS  Google Scholar 

  141. A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, Z. Zhao, L. Li, Y. Cao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandram, A. F. Molisch, N. Ashrafi , and S. Ashrafi , Adv. Opt. Photonics, 7, No. 1, 66–106 (2015).

    ADS  Google Scholar 

  142. B. Thide, F. Tamburini, H. Then, C. G. Someda, and R. A. Ravanelli, arXiv:1410.4268 (2014).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Skvortsov.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 87, No. 4, pp. 515–539, July–August, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abramov, P.I., Budarin, A.S., Kuznetsov, E.V. et al. Quantum-Cascade Lasers in Atmospheric Optical Communication Lines: Challenges and Prospects (Review). J Appl Spectrosc 87, 579–600 (2020). https://doi.org/10.1007/s10812-020-01041-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-020-01041-y

Keywords

Navigation