Skip to main content
Log in

Study on the Mechanisms of Banxia Xiexin Decoction in Treating Diabetic Gastroparesis Based on Network Pharmacology

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

In China, Banxia Xiexin decoction (BXD) is applied to treat diabetic gastroparesis (DGP), but its key active ingredients and mechanisms against DGP are unclear. This study is designated to reveal the molecular mechanisms of BXD in treating DGP by adopting a creative approach known as network pharmacology to explore the active ingredients and therapeutic targets of BXD. In our study, 730 differentially expressed genes of DGP were obtained, and 30 potential targets of BXD against DGP were screened out (including ADRB2, DRD1, FOS, MMP9, FOSL1, FOSL2, JUN, MAP2, DRD2, MYC, F3, CDKN1A, IL6, NFKBIA, ICAM1, CCL2, SELE, DUOX2, MGAM, THBD, SERPINE1, ALOX5, CXCL11, CXCL2, CXCL10, RUNX2, CD40LG, C1QB, MCL1, and ADCYAP1). Based on the findings, BXD contains 60 compounds with therapeutic effect on DGP, including the key active ingredients such as quercetin, wogonin, baicalein, beta-sitosterol, and kaempferol. Sixty-eight pathways including TNF signaling pathway, IL-17 signaling pathway, and AGE-RAGE signaling pathway were significantly enriched. In this study, the mechanisms of BXD in treating DGP are affirmed to be a complex network with multi-target and multi-pathway, which provides a reference for future experimental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Material

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Parkman HP, Hasler WL, Fisher RS (2004) American Gastroenterological Association medical position statement: diagnosis and treatment of gastroparesis. Gastroenterology 127(5):1589–1591. https://doi.org/10.1053/j.gastro.2004.09.054

    Article  PubMed  Google Scholar 

  2. Kassander P (1958) Asymptomatic gastric retention in diabetics (gastroparesis diabeticorum). Ann Intern Med 48(4):797–812. https://doi.org/10.7326/0003-4819-48-4-797

    Article  CAS  PubMed  Google Scholar 

  3. Janssen P, Harris MS, Jones M, Masaoka T, Farre R, Tornblom H, Van Oudenhove L, Simren M, Tack J (2013) The relation between symptom improvement and gastric emptying in the treatment of diabetic and idiopathic gastroparesis. Am J Gastroenterol 108(9):1382–1391. https://doi.org/10.1038/ajg.2013.118

    Article  CAS  PubMed  Google Scholar 

  4. Chang J, Rayner CK, Jones KL, Horowitz M (2010) Diabetic gastroparesis and its impact on glycemia. Endocrinol Metab Clin North Am 39(4):745–762. https://doi.org/10.1016/j.ecl.2010.08.007

    Article  CAS  PubMed  Google Scholar 

  5. Bharucha AE, Kudva YC, Prichard DO (2019) Diabetic Gastroparesis. Endocr Rev 40(5):1318–1352. https://doi.org/10.1210/er.2018-00161

    Article  PubMed  PubMed Central  Google Scholar 

  6. Jung HK, Choung RS, Locke GR 3rd, Schleck CD, Zinsmeister AR, Szarka LA, Mullan B, Talley NJ (2009) The incidence, prevalence, and outcomes of patients with gastroparesis in Olmsted County, Minnesota, from 1996 to 2006. Gastroenterology 136(4):1225–1233. https://doi.org/10.1053/j.gastro.2008.12.047

    Article  PubMed  Google Scholar 

  7. Homko C, Siraj ES, Parkman HP (2016) The impact of gastroparesis on diabetes control: patient perceptions. J Diabetes Complications 30(5):826–829. https://doi.org/10.1016/j.jdiacomp.2016.03.025

    Article  PubMed  Google Scholar 

  8. Horowitz M, Jones KL, Rayner CK, Read NW (2006) ‘Gastric’ hypoglycaemia–an important concept in diabetes management. Neurogastroenterol Motil 18(6):405–407. https://doi.org/10.1111/j.1365-2982.2006.00804.x

    Article  CAS  PubMed  Google Scholar 

  9. Yu D, Ramsey FV, Norton WF, Norton N, Schneck S, Gaetano T, Parkman HP (2017) The burdens, concerns, and quality of life of patients with gastroparesis. Dig Dis Sci 62(4):879–893. https://doi.org/10.1007/s10620-017-4456-7

    Article  PubMed  Google Scholar 

  10. Lacy BE, Crowell MD, Mathis C, Bauer D, Heinberg LJ (2018) Gastroparesis: quality of life and health care utilization. J Clin Gastroenterol 52(1):20–24. https://doi.org/10.1097/mcg.0000000000000728

    Article  PubMed  Google Scholar 

  11. Krishnasamy S, Abell TL (2018) Diabetic gastroparesis: principles and current trends in management. Diabetes Ther 9(Suppl 1):1–42. https://doi.org/10.1007/s13300-018-0454-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Horvath VJ, Izbeki F, Lengyel C, Kempler P, Varkonyi T (2014) Diabetic gastroparesis: functional/morphologic background, diagnosis, and treatment options. Curr Diab Rep 14(9):527. https://doi.org/10.1007/s11892-014-0527-8

    Article  CAS  PubMed  Google Scholar 

  13. Pasricha PJ, Camilleri M, Hasler WL, Parkman HP (2017) White paper AGA: gastroparesis: clinical and regulatory insights for clinical trials. Clin Gastroenterol Hepatol 15(8):1184–1190. https://doi.org/10.1016/j.cgh.2017.04.011

    Article  PubMed  PubMed Central  Google Scholar 

  14. Avalos DJ, Sarosiek I, Loganathan P, McCallum RW (2018) Diabetic gastroparesis: current challenges and future prospects. Clin Exp Gastroenterol 11:347–363. https://doi.org/10.2147/ceg.s131650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xu Q, Bauer R, Hendry BM, Fan TP, Zhao Z, Duez P, Simmonds MS, Witt CM, Lu A, Robinson N, Guo DA, Hylands PJ (2013) The quest for modernisation of traditional Chinese medicine. BMC Complement Altern Med 13:132. https://doi.org/10.1186/1472-6882-13-132

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tian J, Li M, Liao J, Li J, Tong X (2013) Chinese herbal medicine banxia xiexin decoction treating diabetic gastroparesis: a systematic review of randomized controlled trials. Evid Based Complement Alternat Med 2013:749495. https://doi.org/10.1155/2013/749495

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yang Y, Zhang Z, Li S, Ye X, Li X, He K (2014) Synergy effects of herb extracts: pharmacokinetics and pharmacodynamic basis. Fitoterapia 92:133–147. https://doi.org/10.1016/j.fitote.2013.10.010

    Article  CAS  PubMed  Google Scholar 

  18. Tian XY, Liu L (2012) Drug discovery enters a new era with multi-target intervention strategy. Chin J Integr Med 18(7):539–542. https://doi.org/10.1007/s11655-011-0900-2

    Article  PubMed  Google Scholar 

  19. Hopkins AL (2007) Network pharmacology. Nat Biotechnol 25(10):1110–1111. https://doi.org/10.1038/nbt1007-1110

    Article  CAS  PubMed  Google Scholar 

  20. Barabasi AL, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12(1):56–68. https://doi.org/10.1038/nrg2918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li S, Zhang B (2013) Traditional Chinese medicine network pharmacology: theory, methodology and application. Chin J Nat Med 11(2):110–120. https://doi.org/10.1016/s1875-5364(13)60037-0

    Article  PubMed  Google Scholar 

  22. Zhang W, Huai Y, Miao Z, Qian A, Wang Y (2019) Systems pharmacology for investigation of the mechanisms of action of traditional chinese medicine in drug discovery. Front Pharmacol 10:743. https://doi.org/10.3389/fphar.2019.00743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Luo TT, Lu Y, Yan SK, Xiao X, Rong XL, Guo J (2020) Network pharmacology in research of chinese medicine formula: methodology, application and prospective. Chin J Integr Med 26(1):72–80. https://doi.org/10.1007/s11655-019-3064-0

    Article  CAS  PubMed  Google Scholar 

  24. Ru J, Li P, Wang J, Zhou W, Li B, Huang C, Li P, Guo Z, Tao W, Yang Y, Xu X, Li Y, Wang Y, Yang L (2014) TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform 6:13. https://doi.org/10.1186/1758-2946-6-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xu X, Zhang W, Huang C, Li Y, Yu H, Wang Y, Duan J, Ling Y (2012) A novel chemometric method for the prediction of human oral bioavailability. Int J Mol Sci 13(6):6964–6982. https://doi.org/10.3390/ijms13066964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tian S, Wang J, Li Y, Li D, Xu L, Hou T (2015) The application of in silico drug-likeness predictions in pharmaceutical research. Adv Drug Deliv Rev 86:2–10. https://doi.org/10.1016/j.addr.2015.01.009

    Article  CAS  PubMed  Google Scholar 

  27. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N, Iynkkaran I, Liu Y, Maciejewski A, Gale N, Wilson A, Chin L, Cummings R, Le D, Pon A, Knox C, Wilson M (2018) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 46(D1):D1074–D1082. https://doi.org/10.1093/nar/gkx1037

    Article  CAS  PubMed  Google Scholar 

  28. The UniProt Consortium (2017) UniProt: the universal protein knowledgebase (2017). Nucleic Acids Res 45(D1):D158–D169. https://doi.org/10.1093/nar/gkw1099

    Article  CAS  Google Scholar 

  29. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, Yefanov A, Lee H, Zhang N, Robertson CL, Serova N, Davis S, Soboleva A (2013) NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res 41(Database issue):D991–D995. https://doi.org/10.1093/nar/gks1193

    Article  CAS  PubMed  Google Scholar 

  30. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550. https://doi.org/10.1186/s13059-014-0550-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504. https://doi.org/10.1101/gr.1239303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Assenov Y, Ramirez F, Schelhorn SE, Lengauer T, Albrecht M (2008) Computing topological parameters of biological networks. Bioinformatics 24(2):282–284. https://doi.org/10.1093/bioinformatics/btm554

    Article  CAS  PubMed  Google Scholar 

  33. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, Mering CV (2019) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47(D1):D607–D613. https://doi.org/10.1093/nar/gky1131

    Article  CAS  PubMed  Google Scholar 

  34. Yu G, Wang LG, Han Y, He QY (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16(5):284–287. https://doi.org/10.1089/omi.2011.0118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Burley SK, Berman HM, Bhikadiya C, Bi C, Chen L, Di Costanzo L, Christie C, Dalenberg K, Duarte JM, Dutta S, Feng Z, Ghosh S, Goodsell DS, Green RK, Guranovic V, Guzenko D, Hudson BP, Kalro T, Liang Y, Lowe R, Namkoong H, Peisach E, Periskova I, Prlic A, Randle C, Rose A, Rose P, Sala R, Sekharan M, Shao C, Tan L, Tao YP, Valasatava Y, Voigt M, Westbrook J, Woo J, Yang H, Young J, Zhuravleva M, Zardecki C (2019) RCSB Protein Data Bank: biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy. Nucleic Acids Res 47(D1):D464–D474. https://doi.org/10.1093/nar/gky1004

    Article  CAS  PubMed  Google Scholar 

  36. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461. https://doi.org/10.1002/jcc.21334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Doncheva NT, Assenov Y, Domingues FS, Albrecht M (2012) Topological analysis and interactive visualization of biological networks and protein structures. Nat Protoc 7(4):670–685. https://doi.org/10.1038/nprot.2012.004

    Article  CAS  PubMed  Google Scholar 

  38. Yang SY, Li XJ, Wang LY, Zheng JW, Lin MZ, Huang YP (2011) Standard of TCM diagnosis and treatment for diabetic gastroenteropathy [in Chinese]. World J Integr Tradit Western Med 6(5):450–454. https://doi.org/10.13935/j.cnki.sjzx.2011.05.019

    Article  Google Scholar 

  39. Parkman HP, Hallinan EK, Hasler WL, Farrugia G, Koch KL, Calles J, Snape WJ, Abell TL, Sarosiek I, McCallum RW, Nguyen L, Pasricha PJ, Clarke J, Miriel L, Lee L, Tonascia J, Hamilton F (2016) Nausea and vomiting in gastroparesis: similarities and differences in idiopathic and diabetic gastroparesis. Neurogastroenterol Motil 28(12):1902–1914. https://doi.org/10.1111/nmo.12893

    Article  CAS  PubMed  Google Scholar 

  40. Camilleri M, Chedid V, Ford AC, Haruma K, Horowitz M, Jones KL, Low PA, Park SY, Parkman HP, Stanghellini V (2018) Gastroparesis. Nat Rev Dis Primers 4(1):41. https://doi.org/10.1038/s41572-018-0038-z

    Article  PubMed  Google Scholar 

  41. Hasler WL, Wilson LA, Parkman HP, Nguyen L, Abell TL, Koch KL, Pasricha PJ, Snape WJ, Farrugia G, Lee L, Tonascia J, Unalp-Arida A, Hamilton F (2011) Bloating in gastroparesis: severity, impact, and associated factors. Am J Gastroenterol 106(8):1492–1502. https://doi.org/10.1038/ajg.2011.81

    Article  PubMed  Google Scholar 

  42. Pang B, Zhou Q, Li JL, Zhao LH, Tong XL (2014) Treatment of refractory diabetic gastroparesis: western medicine and traditional Chinese medicine therapies. World J Gastroenterol 20(21):6504–6514. https://doi.org/10.3748/wjg.v20.i21.6504

    Article  PubMed  PubMed Central  Google Scholar 

  43. Li JL, Li M, Pang B, Zhou Q, Tian JX, Liu HX, Zhao XY, Tong XL (2014) Combination of symptoms, syndrome and disease: treatment of refractory diabetic gastroparesis. World J Gastroenterol 20(26):8674–8680. https://doi.org/10.3748/wjg.v20.i26.8674

    Article  PubMed  PubMed Central  Google Scholar 

  44. Shi LW, Du LJ, Ni Q (2018) Discussion on the theory and clinical application of Banxia Xiexin Decoction in the treatment of diabetes mellitus [in Chinese]. J Traditi Chin Med 59(3):246–250. https://doi.org/10.13288/j.11-2166/r.2018.03.017

    Article  Google Scholar 

  45. Jiang N, Yu Y, Chen FQ, Yuan LL, Wang QM (2013) Effect of banxia xiexin decoction on gastric antral interstitial cells of Cajal and stem cell factor in diabetic rats [in Chinese]. Chinese journal of integrated traditional and Western medicine 33(12):1672–1676. https://doi.org/10.7661/CJIM.2013.12.1672

    Article  PubMed  Google Scholar 

  46. Zhang FH, Sun XF, Qiu GL, Zhou XF, Liu TT, Huang X (2014) Study of Banxiaxiexin Decoction on gastric motility regulation mechanism of the rat diabetic gastroparesis [in Chinese]. Pharmacol Clin Chin Mater Med 30(2):4–6. https://doi.org/10.13412/j.cnki.zyyl.2014.02.002

    Article  CAS  Google Scholar 

  47. Massi A, Bortolini O, Ragno D, Bernardi T, Sacchetti G, Tacchini M, De Risi C (2017) Research progress in the modification of quercetin leading to anticancer agents. Molecules. https://doi.org/10.3390/molecules22081270

    Article  PubMed  PubMed Central  Google Scholar 

  48. Vieira Frez FC, Martins Colombo Perles JV, Robert Linden D, Gibbons SJ, Amilcar Martins H, Almeida Brito Romualdo D, de Souza SR, Daion Piovezana Bossolani G, Zanoni JN (2017) Restoration of density of interstitial cells of Cajal in the jejunum of diabetic rats after quercetin supplementation. Rev Esp Enferm Dig 109(3):190–195. https://doi.org/10.17235/reed.2016.4338/2016

    Article  CAS  PubMed  Google Scholar 

  49. Ostadmohammadi V, Milajerdi A, Ayati E, Kolahdooz F, Asemi Z (2019) Effects of quercetin supplementation on glycemic control among patients with metabolic syndrome and related disorders: a systematic review and meta-analysis of randomized controlled trials. Phytother Res 33(5):1330–1340. https://doi.org/10.1002/ptr.6334

    Article  CAS  PubMed  Google Scholar 

  50. Tai MC, Tsang SY, Chang LY, Xue H (2005) Therapeutic potential of wogonin: a naturally occurring flavonoid. CNS Drug Rev 11(2):141–150. https://doi.org/10.1111/j.1527-3458.2005.tb00266.x

    Article  CAS  PubMed  Google Scholar 

  51. Liang W, Huang X, Chen W (2017) The effects of baicalin and baicalein on cerebral ischemia: a review. Aging Dis 8(6):850–867. https://doi.org/10.14336/ad.2017.0829

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bin Sayeed MS, Karim SMR, Sharmin T, Morshed MM (2016) Critical analysis on characterization, systemic effect, and therapeutic potential of beta-sitosterol: a plant-derived orphan Phytosterol. Medicines (Basel). https://doi.org/10.3390/medicines3040029

    Article  Google Scholar 

  53. Ren J, Lu Y, Qian Y, Chen B, Wu T, Ji G (2019) Recent progress regarding kaempferol for the treatment of various diseases. Exp Ther Med 18(4):2759–2776. https://doi.org/10.3892/etm.2019.7886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Murakami Y, Tripathi LP, Prathipati P, Mizuguchi K (2017) Network analysis and in silico prediction of protein-protein interactions with applications in drug discovery. Curr Opin Struct Biol 44:134–142. https://doi.org/10.1016/j.sbi.2017.02.005

    Article  CAS  PubMed  Google Scholar 

  55. Raman K (2010) Construction and analysis of protein-protein interaction networks. Autom Exp 2(1):2. https://doi.org/10.1186/1759-4499-2-2

    Article  PubMed  PubMed Central  Google Scholar 

  56. Stanford KI, Middelbeek RJ, Townsend KL, An D, Nygaard EB, Hitchcox KM, Markan KR, Nakano K, Hirshman MF, Tseng YH, Goodyear LJ (2013) Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J Clin Invest 123(1):215–223. https://doi.org/10.1172/jci62308

    Article  CAS  PubMed  Google Scholar 

  57. Matthews VB, Allen TL, Risis S, Chan MH, Henstridge DC, Watson N, Zaffino LA, Babb JR, Boon J, Meikle PJ, Jowett JB, Watt MJ, Jansson JO, Bruce CR, Febbraio MA (2010) Interleukin-6-deficient mice develop hepatic inflammation and systemic insulin resistance. Diabetologia 53(11):2431–2441. https://doi.org/10.1007/s00125-010-1865-y

    Article  CAS  PubMed  Google Scholar 

  58. Pedersen BK (2006) The anti-inflammatory effect of exercise: its role in diabetes and cardiovascular disease control. Essays Biochem 42:105–117. https://doi.org/10.1042/bse0420105

    Article  CAS  PubMed  Google Scholar 

  59. Chavali V, Nandi SS, Singh SR, Mishra PK (2014) Generating double knockout mice to model genetic intervention for diabetic cardiomyopathy in humans. Methods Mol Biol 1194:385–400. https://doi.org/10.1007/978-1-4939-1215-5_22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Li SY, Huang PH, Yang AH, Tarng DC, Yang WC, Lin CC, Chen JW, Schmid-Schonbein G, Lin SJ (2014) Matrix metalloproteinase-9 deficiency attenuates diabetic nephropathy by modulation of podocyte functions and dedifferentiation. Kidney Int 86(2):358–369. https://doi.org/10.1038/ki.2014.67

    Article  CAS  PubMed  Google Scholar 

  61. Mishra M, Flaga J, Kowluru RA (2016) Molecular Mechanism of Transcriptional Regulation of Matrix Metalloproteinase-9 in Diabetic Retinopathy. J Cell Physiol 231(8):1709–1718. https://doi.org/10.1002/jcp.25268

    Article  CAS  PubMed  Google Scholar 

  62. Li G, Zou X, Zhu Y, Zhang J, Zhou L, Wang D, Li B, Chen Z (2017) Expression and influence of matrix metalloproteinase-9/tissue inhibitor of metalloproteinase-1 and vascular endothelial growth factor in diabetic foot ulcers. Int J Low Extrem Wounds 16(1):6–13. https://doi.org/10.1177/1534734617696728

    Article  CAS  PubMed  Google Scholar 

  63. Navarro-Gonzalez JF, Mora-Fernandez C, Muros de Fuentes M, Garcia-Perez J (2011) Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nat Rev Nephrol 7(6):327–340. https://doi.org/10.1038/nrneph.2011.51

    Article  CAS  PubMed  Google Scholar 

  64. Kern TS (2007) Contributions of inflammatory processes to the development of the early stages of diabetic retinopathy. Exp Diabetes Res 2007:95103. https://doi.org/10.1155/2007/95103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Panee J (2012) Monocyte Chemoattractant Protein 1 (MCP-1) in obesity and diabetes. Cytokine 60(1):1–12. https://doi.org/10.1016/j.cyto.2012.06.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Angel P, Karin M (1991) The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta 1072(2–3):129–157. https://doi.org/10.1016/0304-419x(91)90011-9

    Article  CAS  PubMed  Google Scholar 

  67. Nakamizo H, Suzuki H, Miura S, Mogami S, Kishikawa H, Yoshida H, Matsui H, Hibi T (2012) Transmural pressure loading enhances gastric mucosal cell proliferation. Dig Dis Sci 57(10):2545–2554. https://doi.org/10.1007/s10620-012-2208-2

    Article  CAS  PubMed  Google Scholar 

  68. Zhang G, Meredith TC, Kahne D (2013) On the essentiality of lipopolysaccharide to Gram-negative bacteria. Curr Opin Microbiol 16(6):779–785. https://doi.org/10.1016/j.mib.2013.09.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gomes JMG, Costa JA, Alfenas RCG (2017) Metabolic endotoxemia and diabetes mellitus: a systematic review. Metabolism 68:133–144. https://doi.org/10.1016/j.metabol.2016.12.009

    Article  CAS  PubMed  Google Scholar 

  70. Tsuchiya Y, Nozu T, Kumei S, Ohhira M, Okumura T (2012) IL-1 receptor antagonist blocks the lipopolysaccharide-induced inhibition of gastric motility in freely moving conscious rats. Dig Dis Sci 57(10):2555–2561. https://doi.org/10.1007/s10620-012-2210-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Xu M, Yue RS, Yang MY, Yang X, Wu TC, Li JN (2018) Effects of banxia xiexin decoction on intestinal flora and inflammatory factors of diabetic gastroparesis rats [in Chinese]. Chin Tradit Herb Drugs 49(13):3056–3061. https://doi.org/10.7501/j.issn.0253-2670.2018.13.015

    Article  Google Scholar 

  72. Marathe CS, Marathe JA, Rayner CK, Kar P, Jones KL, Horowitz M (2019) Hypoglycaemia and gastric emptying. Diabetes Obes Metab 21(3):491–498. https://doi.org/10.1111/dom.13570

    Article  PubMed  Google Scholar 

  73. Aslam N, Kedar A, Nagarajarao HS, Reddy K, Rashed H, Cutts T, Riely C, Abell TL (2015) Serum catecholamines and dysautonomia in diabetic gastroparesis and liver cirrhosis. Am J Med Sci 350(2):81–86. https://doi.org/10.1097/maj.0000000000000523

    Article  PubMed  PubMed Central  Google Scholar 

  74. Zhu S, Qian Y (2012) IL-17/IL-17 receptor system in autoimmune disease: mechanisms and therapeutic potential. Clin Sci (Lond) 122(11):487–511. https://doi.org/10.1042/cs20110496

    Article  CAS  Google Scholar 

  75. Zheng Z, Zheng F (2019) A complex auxiliary: IL-17/Th17 signaling during type 1 diabetes progression. Mol Immunol 105:16–31. https://doi.org/10.1016/j.molimm.2018.11.007

    Article  CAS  PubMed  Google Scholar 

  76. Honkanen J, Nieminen JK, Gao R, Luopajarvi K, Salo HM, Ilonen J, Knip M, Otonkoski T, Vaarala O (2010) IL-17 immunity in human type 1 diabetes. J Immunol 185(3):1959–1967. https://doi.org/10.4049/jimmunol.1000788

    Article  CAS  PubMed  Google Scholar 

  77. Faria A, Persaud SJ (2017) Cardiac oxidative stress in diabetes: mechanisms and therapeutic potential. Pharmacol Ther 172:50–62. https://doi.org/10.1016/j.pharmthera.2016.11.013

    Article  CAS  PubMed  Google Scholar 

  78. Neshatian L, Gibbons SJ, Farrugia G (2015) Macrophages in diabetic gastroparesis–the missing link? Neurogastroenterol Motil 27(1):7–18. https://doi.org/10.1111/nmo.12418

    Article  CAS  PubMed  Google Scholar 

  79. Smiley R, Naik P, McCallum R, Showkat Ali M (2018) Reactive oxygen species overproduction and MAP kinase phosphatase-1 degradation are associated with gastroparesis in a streptozotocin-induced male diabetic rat model. Neurogastroenterol Motil. https://doi.org/10.1111/nmo.13218

    Article  PubMed  Google Scholar 

  80. Da Silva LM, da Silva R, Maria-Ferreira D, Beltrame OC, da Silva-Santos JE, Werner MFP (2017) Vitamin C improves gastroparesis in diabetic rats: effects on gastric contractile responses and oxidative stress. Dig Dis Sci 62(9):2338–2347. https://doi.org/10.1007/s10620-017-4632-9

    Article  CAS  PubMed  Google Scholar 

  81. Hussain MA, Porras DL, Rowe MH, West JR, Song WJ, Schreiber WE, Wondisford FE (2006) Increased pancreatic beta-cell proliferation mediated by CREB binding protein gene activation. Mol Cell Biol 26(20):7747–7759. https://doi.org/10.1128/mcb.02353-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Li B, Rui J, Ding X, Yang X (2019) Exploring the multicomponent synergy mechanism of Banxia Xiexin Decoction on irritable bowel syndrome by a systems pharmacology strategy. J Ethnopharmacol 233:158–168. https://doi.org/10.1016/j.jep.2018.12.033

    Article  CAS  PubMed  Google Scholar 

  83. Li X, Xu X, Wang J, Yu H, Wang X, Yang H, Xu H, Tang S, Li Y, Yang L, Huang L, Wang Y, Yang S (2012) A system-level investigation into the mechanisms of Chinese traditional medicine: compound danshen formula for cardiovascular disease treatment. PLoS ONE 7(9):e43918. https://doi.org/10.1371/journal.pone.0043918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

We are grateful for the support from the National Natural Science Foundation of China (Grant No. 81774279) and the Key Research and Development Project of Sichuan Province (Grant No. 2018SZ0068).

Author information

Authors and Affiliations

Authors

Contributions

Tingchao Wu, Rensong Yue, and Liang Li have contributed equally to this work. Tingchao Wu and Rensong Yue designed and drafted the paper. Liang Li and Mingmin He participated in the revision of this article.

Corresponding author

Correspondence to Rensong Yue.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical Approval

All the original data in this article are from the public databases, and this article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, T., Yue, R., Li, L. et al. Study on the Mechanisms of Banxia Xiexin Decoction in Treating Diabetic Gastroparesis Based on Network Pharmacology. Interdiscip Sci Comput Life Sci 12, 487–498 (2020). https://doi.org/10.1007/s12539-020-00389-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-020-00389-1

Keywords

Navigation