Skip to main content
Log in

Noninertial and spin effects on the 2D Dirac oscillator in the magnetic cosmic string background

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In this work, we analyze the influence of noninertial and spin effects on the dynamics of the 2D Dirac oscillator in the magnetic cosmic string background. To model this background, we consider a uniform magnetic field, the Aharonov–Bohm effect, and a parameter \(\eta \) generated by a cosmic string. Posteriorly, we determine the bound-state solutions of the system: the Dirac spinor and the relativistic energy spectrum. We verified that this spinor is written in terms of the generalized Laguerre polynomials and this spectrum depends on the effective quantum number \(N_r\), angular velocity \(\Omega \) and parameter s associated to the noninertial and spin effects, magnetic flux \(\Phi \), cyclotron frequency \(\omega _c\), zero-point energy \(E_0\), and on the deficit angle \(\eta \). In particular, we note that besides this spectrum to be a periodic function and asymmetric, its values infinitely increase when \(\eta \rightarrow 0\) or \(N_r=\omega _c=\Omega \rightarrow \infty \). We also note that the energies of the antiparticle with spin down are larger than of the particle with spin up or down. In the nonrelativistic limit, we get the Schrödinger–Pauli oscillator with two types of couplings: the spin-orbit coupling and the spin-rotation coupling, and two Hamiltonians: one quantum harmonic oscillator-type and other Zeeman-type. Finally, we compare our results with other works, where we verified that our problem generalizes some particular cases of the literature when \(\Omega \), \(\omega _c\), \(\Phi \), s or \(\eta \) are excluded from the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moshinsky, M., Szczepaniak, A.: J. Phys. A Math. Gen. 22, L817 (1989)

    ADS  Google Scholar 

  2. Boumali, A., Hassanabadi, H.: Eur. Phys. J. Plus 128, 124 (2013)

    Google Scholar 

  3. Pacheco, M.H., Maluf, R.V., Almeida, C.A.S., Landim, R.R.: Europhys. Lett. 108, 10005 (2014)

    ADS  Google Scholar 

  4. Benítez, J., Martinez-y-Romero, R.P., Núnez-Yépez, H.N., Salas-Brito, A.L.: Phys. Rev. Lett. 64, 1643 (1990)

    ADS  MathSciNet  Google Scholar 

  5. Maluf, R.V.: Int. J. Mod. Phys. A 26, 4991 (2011)

    ADS  Google Scholar 

  6. Munarriz, J., Dominguez-Adame, F., Lima, R.P.A.: Phys. Lett. A 376, 3475 (2012)

    ADS  Google Scholar 

  7. Kulikov, D.A., Uvarov, I.V., Yaroshenko, A.P.: Cent. Eur. J. Phys. 11, 1006 (2013)

    Google Scholar 

  8. Grineviciute, J., Halderson, D.: Phys. Rev. C 85, 054617 (2012)

    ADS  Google Scholar 

  9. Moshinsky, M., Loyola, G.: Found. Phys. 23, 197 (1993)

    ADS  MathSciNet  Google Scholar 

  10. de Lange, O.L.: J. Math. Phys. 32, 1296 (1991)

    ADS  MathSciNet  Google Scholar 

  11. Bermudez, A., Martin-Delgado, M.A., Solano, E.: Phys. Rev. A 76, 041801 (2007)

    ADS  Google Scholar 

  12. Longhi, S.: Opt. Lett. 35, 1302 (2010)

    ADS  Google Scholar 

  13. Quimbay, C., Strange, P.: Graphene physics via the Dirac oscillator in (2+1) dimensions. arXiv:1311.2021, (2013) [cond-mat.mes-hall]

  14. Boumali, A.: Phys. Scrip. 90, 045702 (2015)

    ADS  Google Scholar 

  15. Belouad, A., Jellal, A., Zahidi, Y.: Phys. Lett. A 380, 773 (2016)

    ADS  Google Scholar 

  16. Bakke, K., Furtado, C.: Phys. Lett. A 376, 1269 (2012)

    ADS  Google Scholar 

  17. Neto, J.A., Bueno, M.J., Furtado, C.: Ann. Phys. 373, 273 (2016)

    ADS  Google Scholar 

  18. Franco-Villafañe, J.A., Sadurní, E., Barkhofen, S., Kuhl, U., Mortessagne, F., Seligman, T.H.: Phys. Rev. Lett. 111, 170405 (2013)

    ADS  Google Scholar 

  19. Ho, C.L., Roy, P.: Europhys. Lett. 124, 60003 (2019)

    ADS  Google Scholar 

  20. Oliveira, R.R.S., Maluf, R.V., Almeida, C.A.S.: Ann. Phys. 400, 1 (2019)

    ADS  Google Scholar 

  21. Salazar-Ramírez, M., Ojeda-Guillén, D., Morales-González, A., García-Ortega, V.H.: Eur. Phys. J. Plus 134, 8 (2019)

    Google Scholar 

  22. Hosseinpour, M., Hassanabadi, H., de Montigny, M.: Eur. Phys. J. C 79, 311 (2019)

    ADS  Google Scholar 

  23. Oliveira, R.R.S., Maluf, R.V., Almeida, C.A.S.: Exact solutions of the Dirac oscillator under the influence of the Aharonov-Casher effect in the cosmic string background. arXiv:1810.11149, (2018) [quant-ph]

  24. Matsuo, M., Ieda, J.I., Saitoh, E., Maekawa, S.: Phys. Rev. B 84, 104410 (2011)

    ADS  Google Scholar 

  25. Sagnac, M.G.: C. R. Acad. Sci. (Paris) 157, 708–710 (1913)

    Google Scholar 

  26. Post, E.J.: Rev. Mod. Phys. 39, 475 (1967)

    ADS  Google Scholar 

  27. Barnett, S.J.: Phys. Rev. 6, 239 (1915)

    ADS  Google Scholar 

  28. Ono, M., Chudo, H., Harii, K., Okayasu, S., Matsuo, M., Ieda, J.I., Saitoh, E.: Phys. Rev. B 92, 174424 (2015)

    ADS  Google Scholar 

  29. Einstein, A., de Haas, W.J.: Verh. Dtsch. Phys. Ges. 17, 152 (1915)

    Google Scholar 

  30. Mashhoon, B.: Phys. Rev. Lett. 61, 2639 (1988)

    ADS  Google Scholar 

  31. Fischer, U.R., Schopohl, N.: Europhys. Lett. 54, 502 (2001)

    ADS  Google Scholar 

  32. Viefers, S.: J. Phys: Condens. Matter 20, 123202 (2008)

    ADS  Google Scholar 

  33. Matsuo, M., Ieda, J.I., Saitoh, E., Maekawa, S.: Appl. Phys. Lett. 98, 242501 (2011)

    ADS  Google Scholar 

  34. Schweikhard, V., Coddington, I., Engels, P., Mogendorff, V.P., Cornell, E.A.: Phys. Rev. Lett. 92, 040404 (2004)

    ADS  Google Scholar 

  35. Cooper, N.R., Wilkin, N.K., Gunn, J.M.F.: Phys. Rev. Lett. 87, 120405 (2001)

    ADS  Google Scholar 

  36. Bretin, V., Stock, S., Seurin, Y., Dalibard, J.: Phys. Rev. Lett. 92, 050403 (2004)

    ADS  Google Scholar 

  37. Shen, J.Q., He, S.L.: Phys. Rev. B 68, 195421 (2003)

    ADS  Google Scholar 

  38. Lima, J.R., Brandão, J., Cunha, M.M., Moraes, F.: Eur. Phys. J. D 68, 94 (2014)

    ADS  Google Scholar 

  39. Cooper, N.R.: Adv. Phys. 57, 539 (2008)

    ADS  Google Scholar 

  40. Lu, L.H., Li, Y.Q.: Phys. Rev. A 76, 023410 (2007)

    ADS  Google Scholar 

  41. Werner, S.A., Staudenmann, J.L., Colella, R.: Phys. Rev. Lett. 42, 1103 (1979)

    ADS  Google Scholar 

  42. Wang, B.Q., Long, Z.W., Long, C.Y., Wu, S.R.: Mod. Phys. Lett. A 33, 1850025 (2018)

    ADS  Google Scholar 

  43. Santos, L.C.N., Barros, C.C.: Eur. Phys. J. C 78, 13 (2018)

    ADS  Google Scholar 

  44. Hosseinpour, M., Hassanabadi, H.: Eur. Phys. J. Plus 130, 236 (2015)

    Google Scholar 

  45. Castro, L.B.: Eur. Phys. J. C 76, 61 (2016)

    ADS  Google Scholar 

  46. Dayi, Ö.F., Yunt, E.: Ann. Phys. 390, 143 (2018)

    ADS  Google Scholar 

  47. Matsuo, M., Ieda, J.I., Saitoh, E., Maekawa, S.: Phys. Rev. Lett. 106, 076601 (2011)

    ADS  Google Scholar 

  48. Anandan, J.: Phys. Rev. D 24, 338 (1981)

    ADS  Google Scholar 

  49. Zubkov, M.A.: Europhys. Lett. 121, 47001 (2018)

    ADS  Google Scholar 

  50. Chernodub, M.N., Gongyo, S.: J. High Energy Phys. 2017, 136 (2017)

    Google Scholar 

  51. Liu, Y., Zahed, I.: Phys. Rev. D 98, 014017 (2018)

    ADS  MathSciNet  Google Scholar 

  52. Chernodub, M.N., Gongyo, S.: Phys. Rev. D 96, 096014 (2017)

    ADS  Google Scholar 

  53. Cavalcante, E., Carvalho, J., Furtado, C.: Eur. Phys. J. Plus 131, 288 (2016)

    Google Scholar 

  54. Gonzalez, J., Guinea, F., Vozmediano, M.A.H.: Nucl. Phys. B 406, 771 (1993)

    ADS  Google Scholar 

  55. Kolesnikov, D.V., Osipov, V.A.: Eur. Phys. J. B 49, 465 (2006)

    ADS  Google Scholar 

  56. Cunha, M.M., Brandão, J., Lima, J.R., Moraes, F.: Eur. Phys. J. B 88, 288 (2015)

    ADS  Google Scholar 

  57. Gomes, F.A., Bezerra, V.B., de Lima, J.R.F., Moraes, F.J.S.: Eur. Phys. J. B 92, 41 (2019)

    ADS  Google Scholar 

  58. Ferkous, N., Bounames, A.: Phys. Lett. A 325, 21 (2004)

    ADS  MathSciNet  Google Scholar 

  59. Carvalho, J., Furtado, C., Moraes, F.: Phys. Rev. A 84, 032109 (2011)

    ADS  Google Scholar 

  60. Andrade, F.M., Silva, E.O.: Eur. Phys. J. C 74, 3187 (2014)

    ADS  Google Scholar 

  61. Strange, P., Ryder, L.H.: Phys. Lett. A 380, 3465 (2016)

    ADS  MathSciNet  Google Scholar 

  62. Bakke, K.: Eur. Phys. J. Plus 127, 82 (2012)

    ADS  Google Scholar 

  63. Bakke, K.: Gen. Relativ. Gravit. 45, 1847 (2013)

    ADS  Google Scholar 

  64. Vilenkin, A., Shellard, E.P.S.: Cosmic Strings and Other Topological Defects. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  65. Katanaev, M.O., Volovich, I.V.: Ann. Phys. 216, 1 (1992)

    ADS  Google Scholar 

  66. Kleinert, H.: Gauge Fields in Condensed Matter, vol. 2. World Scientific, Singapore (1989)

    MATH  Google Scholar 

  67. Bakke, K., Furtado, C.: Phys. Rev. D 82, 084025 (2010)

    ADS  Google Scholar 

  68. Greiner, W.: Relativistic Quantum Mechanics: Wave Equations, 3rd edn. Springer, Berlin (2000)

    MATH  Google Scholar 

  69. Villalba, V.M., Maggiolo, A.R.: Eur. Phys. J. B 22, 31 (2001)

    ADS  Google Scholar 

  70. Aharonov, Y., Bohm, D.: Phys. Rev. 115, 485 (1959)

    ADS  MathSciNet  Google Scholar 

  71. Andrade, F.M., Silva, E.O.: Europhys. Lett. 108, 30003 (2014)

    ADS  Google Scholar 

  72. Hehl, F.W., Ni, W.-T.: Phys. Rev. D 42, 2045 (1990)

    ADS  Google Scholar 

  73. Oliveira, R.R.S., Sousa, M.F.: Braz. J. Phys. 49, 315 (2019)

    ADS  Google Scholar 

  74. Abramowitz, M., Stegum, I.A.: Handbook of Mathematical Functions. Dover Publications Inc., New York (1965)

    Google Scholar 

  75. Vitória, R.L.L., Bakke, K.: Int. J. Mod. Phys. D 27, 1850005 (2018)

    ADS  Google Scholar 

  76. Mandal, B.P., Verma, S.: Phys. Lett. A 374, 1021 (2010)

    ADS  MathSciNet  Google Scholar 

  77. Quimbay, C., Strange, P.: Quantum phase transition in the chirality of the (2+1)-dimensional Dirac oscillator. arXiv:1312.5251, (2013) [quant-ph]

  78. Lamata, L., Casanova, J., Gerritsma, R., Roos, C.F., García-Ripoll, J.J., Solano, E.: New J. Phys. 13, 095003 (2011)

    ADS  Google Scholar 

  79. Schakel, A.M.: Phys. Rev. D 43, 1428 (1991)

    ADS  Google Scholar 

  80. Miransky, V.A., Shovkovy, I.A.: Phys. Rep. 576, 1 (2015)

    ADS  Google Scholar 

Download references

Acknowledgements

The author would like to thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. R. S. Oliveira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, R.R.S. Noninertial and spin effects on the 2D Dirac oscillator in the magnetic cosmic string background. Gen Relativ Gravit 52, 88 (2020). https://doi.org/10.1007/s10714-020-02743-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-020-02743-6

Navigation