Skip to main content
Log in

The Kerr–Newman black hole as a rotating Van der Waals gas

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In this work we employ the horizon approach for the thermodynamics of black holes, together with holographic equipartition, to show that the Kerr–Newman black hole can be considered as a rotating Van der Waals gas. Our results are interpreted in light of a simple mechanical and geometrical model, which is amenable to emerge from the space-time atom perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, S., Wu, S.-Q., Xie, F., Dan, L.: Chin. Phys. Lett. 23, 1096 (2006)

    ADS  Google Scholar 

  2. Sekiwa, Y.: Phys. Rev. D 73, 084009 (2006)

    ADS  MathSciNet  Google Scholar 

  3. Larranaga Rubio, E. A., arXiv:0711.0012 [gr-qc]. Accessed 15 Mar 2020

  4. Kastor, D., Ray, S., Traschen, J.: Class. Quantum Grav. 26, 125020 (2009)

    Google Scholar 

  5. Henneaux, M., Teitelboim, C.: Phys. Lett. B 143, 415 (1984)

    ADS  MathSciNet  Google Scholar 

  6. Henneaux, M., Teitelboim, C.: Phys. Lett. B 222, 195 (1989)

    ADS  Google Scholar 

  7. Teitelboim, C.: Phys. Lett. B 158, 293 (1985)

    ADS  Google Scholar 

  8. Kubiznak, D., Mann, R.B., Teo, M.: Class. Quantum Grav. 34, 063001 (2017)

    ADS  Google Scholar 

  9. Padmanabhan, T.: Mod. Phys. Lett. A 25, 1129 (2010)

    ADS  Google Scholar 

  10. Vargas, A.F., Contreras, E., Bargueño, P.: Gen. Relativ. Gravit 50, 117 (2018)

    ADS  Google Scholar 

  11. Wei, S.-W., Liu, Y.-X.: Phys. Rev. Lett. 115, 111302 (2015)

    ADS  Google Scholar 

  12. Erratum, Phys: Rev. Lett. 116, 169903 (2016)

    Google Scholar 

  13. Miao, Y.-G., Xu, Z.-M.: Phys. Rev. D 98, 044001 (2018)

    ADS  Google Scholar 

  14. Zangeneh, M.K., Dehyadegari, A., Sheykhi, A., Mann, R.B.: Phys. Rev. D 97, 084054 (2018)

    ADS  MathSciNet  Google Scholar 

  15. Wei, S.-W., Liu, Y.-X., Mann, R.B.: Phys. Rev. Lett. 123, 071103 (2019)

    ADS  MathSciNet  Google Scholar 

  16. Ruppeiner, G.: Rev. Mod. Phys. 67, 605 (1995)

    ADS  MathSciNet  Google Scholar 

  17. Ruppeiner, G.: Erratum Rev. Mod. Phys. 68, 313(E) (1996)

    ADS  MathSciNet  Google Scholar 

  18. Strominger, A., Vafa, C.: Phys. Lett. B 379, 99 (1996)

    ADS  MathSciNet  Google Scholar 

  19. Mathure, S.D.: Fortschr. Phys. 53, 793 (2005)

    MathSciNet  Google Scholar 

  20. Sen, A.: Gen. Relativ. Gravit 46, 1711 (2014)

    ADS  Google Scholar 

  21. Ashtekar, A., Baez, J., Corichi, A., Krasnov, K.: Phys. Rev. Lett. 80, 904 (1998)

    ADS  MathSciNet  Google Scholar 

  22. Ghosh, A., Noui, K., Perez, A.: Phys. Rev. D 89, 084069 (2014)

    ADS  Google Scholar 

  23. Perez, A.: Rep. Prog. Phys. 80, 126901 (2017)

    ADS  Google Scholar 

  24. Maldacena, J.M.: Theor. Phys. 38, 1113 (1999)

    Google Scholar 

  25. Gubser, S.S., Klebanov, I.R., Polyakov, A.M.: Phys. Lett. B 428, 105 (1998)

    ADS  MathSciNet  Google Scholar 

  26. Witten, E.: Adv. Theor. Math. Phys. 2, 253 (1998)

    ADS  MathSciNet  Google Scholar 

  27. Bekenstein, J.D.: Phys. Rev. D 9, 3292 (1974)

    ADS  Google Scholar 

  28. Bekenstein, J.D., Mukhanov, V.F.: Phys. Lett. B 360, 7 (1995)

    ADS  MathSciNet  Google Scholar 

  29. ’t Hooft, G.: In: Aly, A., Ellis, J., Randjbar Daemi, S. (eds.) Salam Festschrifft. World Scientific, Singapore (1993)

  30. Susskind, L.: J. Math. Phys. 36, 6377 (1995)

    ADS  MathSciNet  Google Scholar 

  31. Hod, S.: Phys. Rev. Lett. 81, 4293 (1998)

    ADS  MathSciNet  Google Scholar 

  32. Khriplovich, I.B.: Phys. Lett. B 431, 19 (1998)

    ADS  MathSciNet  Google Scholar 

  33. Gour, G.: Phys. Rev. D 66, 104022 (2002)

    ADS  MathSciNet  Google Scholar 

  34. Dreyer, O.: Phys. Rev. Lett. 90, 081301 (2003)

    ADS  Google Scholar 

  35. Maggiore, M.: Phys. Rev. 100, 141301 (2008)

    MathSciNet  Google Scholar 

  36. Dvali, G., Gomez, C.: Fortschr. Phys. 59, 579 (2011)

    MathSciNet  Google Scholar 

  37. Davidson, A.: Int. J. Mod. Phys. D 23, 1450041 (2014)

    ADS  Google Scholar 

  38. Oriti, D., Pranzetti, D., Sindoni, L.: Phys. Rev. Lett. 116, 211301 (2016)

    ADS  Google Scholar 

  39. Davidson, A.: Phys. Rev. D 100, 081502(R) (2019)

    ADS  Google Scholar 

  40. Johnson, C.V. arXiv:1907.05883 [hep-th]. Accessed 12 July 2020

  41. Johnson, C.V.: Class. Quantum Grav. 37, 054003 (2020)

    ADS  Google Scholar 

  42. Dolan, B.P.: Class. Quantum Grav. 28, 125020 (2011)

    ADS  Google Scholar 

  43. Dolan, B.P.: Class. Quantum Grav. 28, 235017 (2011)

    ADS  Google Scholar 

  44. Cvetic, M., Gibbons, G.W., Kubiznak, D., Pope, C.N.: Phys. Rev. D 84, 024037 (2011)

    ADS  Google Scholar 

  45. Dolan, B. P. arXiv:1209.1272 (2012). Accessed 15 Mar 2020

  46. Kubiznak, D., Mann, R.B.: Can. J. Phys. 93, 999 (2015)

    ADS  Google Scholar 

  47. Mann, R.B.: The Chemistry of Black Holes. In: Nicolini, P., Kaminski, M., Mureika, J., Bleicher, M. (eds.) 1st Karl Schwarzschild Meeting on Gravitational Physics. In: Springer Proceedings in Physics, 170th edn. Springer, (2016)

  48. Dolan, B.P.: Mod. Phys. Lett. A 30, 154002 (2015)

    Google Scholar 

  49. Padmanabhan, T.: Class. Quantum Grav. 19, 5387 (2002)

    ADS  Google Scholar 

  50. Padmanabhan, T., Kothawala, D.: Phys. Rept. 531, 115 (2013)

    ADS  Google Scholar 

  51. Chakraborty, S., Padmanabhan, T.: Phys. Rev. D 42, 104011 (2015)

    ADS  Google Scholar 

  52. Hansen, D., Kubiznak, D., Mann, R.B.: Class. Quantum Grav. 33, 165005 (2016)

    ADS  Google Scholar 

  53. Altamirano, N., Kubiznak, D., Mann, R.B., Sherkatghanad, Z.: Galaxies 2, 89 (2014)

    ADS  Google Scholar 

  54. Tian, Y., Wu, X.-N.: Phys. Rev. D 81, 104013 (2010)

    ADS  Google Scholar 

  55. Verlinde, E.: J. High Energ. Phys. 2011, 29 (2011)

    Google Scholar 

  56. Hayward, S.A.: Phys. Rev. D 74, 104013 (2006)

    ADS  MathSciNet  Google Scholar 

  57. Smarr, L.: Phys. Rev. D 7, 289 (1973)

    ADS  Google Scholar 

  58. Wiltshite, D.L., Visser, M., Scott, S.M. (eds.): The Kerr Spacetime: Rotating Black Holes in General Relativity. Cambridge University Press, Cambridge (2009)

    Google Scholar 

Download references

Acknowledgements

P. B. dedicates this work to Anaís, Lucía, Inés and Ana for continuous support. P. B. is funded by the Beatriz Galindo contract BEAGAL 18/00207 (Spain). F. V. acknowledges funding by the Department of Physics of Universidad de los Andes. A.V is supported by a Melbourne Research Scholarship and the N.D. Goldsworthy Scholarship

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Bargueño.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villalba, F.D., Vargas, A.F., Contreras, E. et al. The Kerr–Newman black hole as a rotating Van der Waals gas. Gen Relativ Gravit 52, 87 (2020). https://doi.org/10.1007/s10714-020-02739-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-020-02739-2

Keywords

Navigation