Skip to main content
Log in

Pricing and personal data collection strategies of online platforms in the face of privacy concerns

  • Published:
Electronic Commerce Research Aims and scope Submit manuscript

Abstract

We consider a platform providing free content for users and earning profit from the sale of advertising. The platform can collect and analyze personal data to customize advertisements for individual users. Customization may alleviate users’ aversion to advertising, but it may also raise privacy concerns. Considering the platform as a two-sided market with asymmetric externalities, we investigate the effects of privacy concerns on the platform’s optimal advertising pricing and data collection strategies. We find that it is always beneficial for the platform to collect and analyze personal data. When users attach less concerns on privacy, the price increases with the efficiency of efforts and decreases with the initial nuisance cost of advertisements to users. However, if users attach more concerns on privacy, the price decreases with the efficiency of efforts and increases with the initial nuisance cost of advertisements to users.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lv, D., & Zhu, S. (2019). Achieving correlated differential privacy of big data publication. Computers & Security, 82, 184–195.

    Article  Google Scholar 

  2. Ghasemaghaei, M., & Calic, G. (2019). Can big data improve firm decision quality? The role of data quality and data diagnosticity. Decision Support Systems, 120, 38–49.

    Article  Google Scholar 

  3. Acquisti, A., Taylor, C., & Wagman, L. (2016). The economics of privacy. Journal of Economic Literature, 54(2), 442–492.

    Article  Google Scholar 

  4. Montes, R., Sand-Zantman, W., & Valletti, T. (2018). The value of personal information in online markets with endogenous privacy. Management Science, 65(3), 1342–1362.

    Article  Google Scholar 

  5. Valletti, T., & Wu, J. (2020). User profiling with data requirements: Structure and policy implications. Production and Operations Management, 29(2), 309–329.

    Article  Google Scholar 

  6. Cohen, M. C. (2017). Big data and service operations. Production and Operations Management, 27(9), 1709–1723.

    Article  Google Scholar 

  7. Kox, H., Straathof, B., & Zwart, G. (2017). Targeted advertising, platform competition, and privacy. Journal of Economics & Management Strategy, 26(3), 557–570.

    Article  Google Scholar 

  8. Ghose, A., & Todri, V. (2016). Towards a digital attribution model: Measuring the impact of display advertising on online user behavior. MIS Quarterly, 40(4), 889–910.

    Article  Google Scholar 

  9. Goldfarb, A., & Tucker, C. (2011). Online display advertising: Targeting and obtrusiveness. Marketing Science, 30(3), 389–404.

    Article  Google Scholar 

  10. Hao, L., Guo, H., & Easley, R. (2016). A mobile platform’s in-app advertising contract under agency pricing for app sales. Production and Operations Management, 26(2), 189–202.

    Article  Google Scholar 

  11. Liu, J., Liu, F., & Ansari, N. (2014). Monitoring and analyzing big traffic data of a large-scale cellular network with Hadoop. IEEE Network, 28(4), 32–39.

    Article  Google Scholar 

  12. Bi, S., Zhang, R., Ding, Z., et al. (2015). Wireless communications in the era of big data. IEEE communications magazine, 53(10), 190–199.

    Article  Google Scholar 

  13. He, Y., Yu, F. R., Zhao, N., et al. (2016). Big data analytics in mobile cellular networks. IEEE access, 4, 1985–1996.

    Article  Google Scholar 

  14. Ghemawat, S., Gobioff, H., & Leung, S. T. (2003). The Google file system. Proceedings of the nineteenth ACM symposium on Operating systems principles, pp. 29–43.

  15. Dean, J., & Ghemawat, S. (2008). MapReduce: Simplified data processing on large clusters. Communications of the ACM, 51(1), 107–113.

    Article  Google Scholar 

  16. Hadoop, A. (2011). Apache hadoop. https://hadoop.apache.org.

  17. Li, C., Li, D. Y., Miklau, G., et al. (2014). A theory of pricing private data. ACM Transactions on Database Systems (TODS), 39(4), 34.

    Article  Google Scholar 

  18. Shen, Y., Guo, B., Shen, Y., et al. (2016). A pricing model for big personal data. Tsinghua Science and Technology, 21(5), 482–490.

    Article  Google Scholar 

  19. Ruiming, T., Huayu, W., Zhifeng, B., et al. (2013). The price is right: Models and algorithms for pricing data. In DEXA'2013: 24th international conference on database and expert systems applications (pp. 380–394) Springer.

  20. Spiekermann, S., Acquisti, A., Böhme, R., et al. (2015). The challenges of personal data markets and privacy. Electronic markets, 25(2), 161–167.

    Article  Google Scholar 

  21. Purcell, K., Rainie, L., & Brenner, J. (2012). Search engine use 2012. https://www.pewresearch.org/internet/2012/03/09/search-engine-use-2012/.

  22. Kummer, M., & Schulte, P. (2019). When private information settles the bill: Money and privacy in Google’s market for smartphone applications. Management Science, 65(8), 3470–3494.

    Article  Google Scholar 

  23. Wu, K. W., Huang, S. Y., Yen, D. C., et al. (2012). The effect of online privacy policy on user privacy concern and trust. Computers in Human Behavior, 28(3), 889–897.

    Article  Google Scholar 

  24. Bennett, S. C. (2010). Regulating online behavioral advertising. J. Marshall L. Rev., 44, 899.

    Google Scholar 

  25. Tang, Z., Hu, Y., & Smith, M. D. (2008). Gaining trust through online privacy protection: Self-regulation, mandatory standards, or caveat emptor. Journal of Management Information Systems, 24(4), 153–173.

    Article  Google Scholar 

  26. Tucker, C. E. (2014). Social networks, personalized advertising, and privacy controls. Journal of Marketing Research, 51(5), 546–562.

    Article  Google Scholar 

  27. Lee, Y., & Kwon, O. (2010). An index-based privacy preserving service trigger in context-aware computing environments. Expert systems with applications, 37(7), 5192–5200.

    Article  Google Scholar 

  28. Casadesus-Masanell, R., & Hervas-Drane, A. (2015). Competing with privacy. Management Science, 61(1), 229–246.

    Article  Google Scholar 

  29. Rochet, J. C., & Tirole, J. (2006). Two-sided markets: A progress report. The RAND Journal of Economics, 37(3), 645–667.

    Article  Google Scholar 

  30. Armstrong, M. (2006). Competition in two-sided markets. The RAND Journal of Economics, 37(3), 668–691.

    Article  Google Scholar 

  31. Kaiser, U., & Wright, J. (2006). Price structure in two-sided markets: Evidence from the magazine industry. International Journal of Industrial Organization, 24(1), 1–28.

    Article  Google Scholar 

  32. Ferrando, J., Gabszewicz, J. J., Laussel, D., et al. (2008). Intermarket network externalities and competition: An application to the media industry. International Journal of Economic Theory, 4(3), 357–379.

    Article  Google Scholar 

  33. Roger, G. (2017). Two-sided competition with vertical differentiation. Journal of Economics, 120(3), 193–217.

    Article  Google Scholar 

  34. Kumar, S., & Sethi, S. P. (2009). Dynamic pricing and advertising for web content providers. European Journal of Operational Research, 197(3), 924–944.

    Article  Google Scholar 

  35. Carroni, E. (2018). Behaviour-based price discrimination with cross-group externalities. Journal of Economics, 125(2), 137–157.

    Article  Google Scholar 

  36. Reisinger, M. (2012). Platform competition for advertisers and users in media markets. International Journal of Industrial Organization, 30(2), 243–252.

    Article  Google Scholar 

  37. Cho, C. H. (2004). Why do people avoid advertising on the internet? Journal of Advertising, 33(4), 89–97.

    Article  Google Scholar 

  38. Gal-Or, E., Gal-Or, R., & Penmetsa, N. (2018). The role of user privacy concerns in shaping competition among platforms. Information Systems Research, 29(3), 698–722.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support from the National Natural Science Foundation of China (71771179, 71532015) and the International Exchange Program for Graduate Students of Tongji University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixuan Feng.

Ethics declarations

Conflict of interests

The authors declare that there is no conflict of interests regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Proposition 1

Differentiating Function (8) with respect to \(p,e\), we obtain:

$$ \frac{{\partial \pi_{P} }}{\partial p} = \frac{{ - 2p + \alpha \left( {1 - \gamma e^{2} } \right) + \frac{{ke^{2} }}{2}}}{{1 + \alpha \left( {\delta - \beta e} \right)}} $$
(9)
$$ \frac{{\partial \pi_{P} }}{\partial e} = \frac{{p - \frac{{ke^{2} }}{2}}}{{1 + \alpha \left( {\delta - \beta e} \right)}}\left( { - \frac{{ke\left( {\alpha \left( {1 - \gamma e^{2} } \right) - p} \right)}}{{p - \frac{{ke^{2} }}{2}}} + \frac{{ - 2\alpha \gamma e\left( {1 + \alpha \left( {\delta - \beta e} \right)} \right) + \alpha \beta \left( {\alpha \left( {1 - \gamma e^{2} } \right) - p} \right)}}{{1 + \alpha \left( {\delta - \beta e} \right)}}} \right) $$
(10)

By the first order condition \(\frac{{\partial \pi_{p} }}{\partial p} = 0,\frac{{\partial \pi_{p} }}{\partial e} = 0\), we have

$$ p^{*} = \frac{{\alpha \left( {1 - \gamma e^{*2} } \right)}}{2} + \frac{{ke^{*2} }}{4} $$
(11)

and \(e^{*}\) satisfies

$$ 3\alpha \beta \left( {\frac{k}{4} + \frac{\alpha \gamma }{2}} \right)e^{2} - \left( {k + 2\alpha \gamma } \right)\left( {1 + \alpha \delta } \right)e + \frac{{\alpha^{2} \beta }}{2} = 0 $$
(12)

In the quadratic Eq. (12),

$$ \Delta = \left( {k + 2\alpha \gamma } \right)^{2} (1 + \alpha \delta )^{2} - \frac{{3\alpha^{3} \beta^{2} \left( {k + 2\alpha \gamma } \right)}}{2} $$
(13)

And if \(k \ge \frac{{2\alpha^{3} \beta^{2} }}{{(1 + \alpha \delta )^{2} }} - 2\alpha \gamma\), it follows that

$$ \left( {k + 2\alpha \gamma } \right)(1 + \alpha \gamma )^{2} - 2\alpha^{3} \beta^{2} \ge 0 $$
(14)

Since \(k + 2\alpha \gamma > 0\), we have \(\left( {k + 2\alpha \gamma } \right)^{2} (1 + \alpha \gamma )^{2} - 2\alpha^{3} \beta^{2} \left( {k + 2\alpha \gamma } \right) \ge 0\). As a result, \(\Delta > 0\), there are two different solutions of Eq. (12).

By solving the quadratic Eq. (12), the two solutions to (12) are as following: \(e_{1} = \frac{{2\left( {k + 2\alpha \gamma } \right)\left( {1 + \alpha \delta } \right) - 2\sqrt \Delta }}{{3\alpha \beta \left( {k + 2\alpha \gamma } \right)}}\), \(e_{2} = \frac{{2\left( {k + 2\alpha \gamma } \right)\left( {1 + \alpha \delta } \right) + 2\sqrt \Delta }}{{3\alpha \beta \left( {k + 2\alpha \gamma } \right)}}\).

Next, we will prove that \(e_{2}\) is not a feasible solution to the problem.

If \(e = e_{2}\), then

$$ p - \frac{{ke^{2} }}{2} = \frac{\alpha }{2} - \frac{{\left( {k + 2\alpha \gamma } \right)e^{2} }}{4} = \frac{2\alpha }{3} - \frac{{2\left( {k + 2\alpha \gamma } \right)(1 + \alpha \delta )^{2} }}{{9\alpha^{2} \beta^{2} }} - \frac{{2\left( {1 + \alpha \delta } \right)\sqrt \Delta }}{{9\alpha^{2} \beta^{2} }} $$
(15)

Since

$$ \left( {\frac{2\alpha }{3} - \frac{{2\left( {k + 2\alpha \gamma } \right)(1 + \alpha \delta )^{2} }}{{9\alpha^{2} \beta^{2} }}} \right)^{2} - \left( {\frac{{2\left( {1 + \alpha \delta } \right)\sqrt \Delta }}{{9\alpha^{2} \beta^{2} }}} \right)^{2} = \frac{2}{{9\alpha \beta^{2} }}\left( {2\alpha^{3} \beta^{2} - \left( {k + 2\alpha \gamma } \right)(1 + \alpha \delta )^{2} } \right) $$
(16)

And from Eq. (14), it follows that \(\frac{2}{{9\alpha \beta^{2} }}\left( {2\alpha^{3} \beta^{2} - \left( {k + 2\alpha \gamma } \right)\left( {1 + \alpha \delta } \right)^{2} } \right) \le 0\). Hence, Eq. (16) is non-positive, \(\left( {\frac{2\alpha }{3} - \frac{{2\left( {k + 2\alpha \gamma } \right)\left( {1 + \alpha \delta } \right)^{2} }}{{9\alpha^{2} \beta^{2} }}} \right)^{2} - \left( {\frac{{2\left( {1 + \alpha \delta } \right)\sqrt \Delta }}{{9\alpha^{2} \beta^{2} }}} \right) \le 0\). Thus, \(\left| {\frac{{2\left( {1 + \alpha \delta } \right)\sqrt \Delta }}{{9\alpha^{2} \beta^{2} }}} \right| \ge \left| {\frac{2\alpha }{3} - \frac{{2\left( {k + 2\alpha \gamma } \right)\left( {1 + \alpha \delta } \right)^{2} }}{{9\alpha^{2} \beta^{2} }}} \right|\). Because \(\frac{{2\left( {1 + \alpha \delta } \right)\sqrt \Delta }}{{9\alpha^{2} \beta^{2} }} > 0\), \(\frac{{2\left( {1 + \alpha \delta } \right)\sqrt \Delta }}{{9\alpha^{2} \beta^{2} }} \ge \left| {\frac{2\alpha }{3} - \frac{{2\left( {k + 2\alpha \gamma } \right)\left( {1 + \alpha \delta } \right)^{2} }}{{9\alpha^{2} \beta^{2} }}} \right| \ge \frac{2\alpha }{3} - \frac{{2\left( {k + 2\alpha \gamma } \right)\left( {1 + \alpha \delta } \right)^{2} }}{{9\alpha^{2} \beta^{2} }}\). Hence, from Eq. (15), we have \(p - \frac{{ke^{2} }}{2} \le 0\). This implies that the profit of the platform from each advertisement is nonpositive. Obviously, it is unreasonable.

If \(e = e_{1}\),

$$ p - \frac{{ke^{2} }}{2} = \frac{\alpha }{2} - \frac{{\left( {k + 2\alpha \gamma } \right)e^{2} }}{4} = \frac{2\alpha }{3} - \frac{{2\left( {k + 2\alpha \gamma } \right)(1 + \alpha \delta )^{2} }}{{9\alpha^{2} \beta^{2} }} + \frac{{2\left( {1 + \alpha \delta } \right)\sqrt \Delta }}{{9\alpha^{2} \beta^{2} }} $$
(17)

Because

$$ \left( {\frac{{2\left( {1 + \alpha \delta } \right)\sqrt \Delta }}{{9\alpha^{2} \beta^{2} }}} \right)^{2} - \left( {\frac{2\alpha }{3} - \frac{{2\left( {k + 2\alpha \gamma } \right)(1 + \alpha \delta )^{2} }}{{9\alpha^{2} \beta^{2} }}} \right)^{2} = \frac{2}{{9\alpha \beta^{2} }}\left( {\left( {k + 2\alpha \gamma } \right)(1 + \alpha \delta )^{2} - 2\alpha^{3} \beta^{2} } \right) $$
(18)

And from Eq. (14), it follows that \(\frac{2}{{9\alpha \beta^{2} }}\left( {\left( {k + 2\alpha \gamma } \right)(1 + \alpha \delta )^{2} - 2\alpha^{3} \beta^{2} } \right) \ge 0\). Hence, Eq. (18) is nonnegative. Namely, \(\left| {\frac{{2\left( {1 + \alpha \delta } \right)\sqrt \Delta }}{{9\alpha^{2} \beta^{2} }}} \right| \ge \left| {\frac{2\alpha }{3} - \frac{{2\left( {k + 2\alpha \gamma } \right)\left( {1 + \alpha \delta } \right)^{2} }}{{9\alpha^{2} \beta^{2} }}} \right|\). Because of \(\frac{{2\left( {1 + \alpha \delta } \right)\sqrt \Delta }}{{9\alpha^{2} \beta^{2} }} > 0\), \(\frac{{2\left( {1 + \alpha \delta } \right)\sqrt \Delta }}{{9\alpha^{2} \beta^{2} }} \ge \left| {\frac{2\alpha }{3} - \frac{{2\left( {k + 2\alpha \gamma } \right)\left( {1 + \alpha \delta } \right)^{2} }}{{9\alpha^{2} \beta^{2} }}} \right| \ge \frac{2\alpha }{3} - \frac{{2\left( {k + 2\alpha \gamma } \right)\left( {1 + \alpha \delta } \right)^{2} }}{{9\alpha^{2} \beta^{2} }}\). As a result, from Eq. (17), \(p - \frac{{ke^{2} }}{2} >\) \(0\) must hold, and \(p > 0\). And from Eq. (13), we have \(e > 0\).

Moreover,

$$ \alpha \left( {1 - \gamma e^{2} } \right) - p = \frac{{\alpha \left( {1 - \gamma e^{2} } \right)}}{2} - \frac{{ke^{2} }}{4} = p - \frac{{ke^{2} }}{2} > 0 $$
(19)

Besides,

$$ 1 + \alpha \left( {\delta - \beta e} \right) = \frac{1 + \alpha \delta }{3} + \frac{2\sqrt \Delta }{{3\left( {k + 2\alpha \gamma } \right)}} > 0 $$
(20)

Therefore, \(\pi_{P} = \left( {p - \frac{{ke^{2} }}{2}} \right)\frac{{\alpha \left( {1 - \gamma e^{2} } \right) - p}}{{1 + \alpha \left( {\delta - \beta e} \right)}} > 0\). Thus, we have \(e^{*} = e_{1} = \frac{{2\left( {k + 2\alpha \gamma } \right)\left( {1 + \alpha \delta } \right) - 2\sqrt \Delta }}{{3\alpha \beta \left( {k + 2\alpha \gamma } \right)}}\), and \(p^{*} = \frac{{\alpha \left( {1 - \gamma e^{*2} } \right)}}{2} + \frac{{ke^{*2} }}{4}\). And we can prove that \(0 < N_{A}^{*} < 1\), and \(0 < N_{C}^{*} < 1\).

From Eq. (19) and Eq. (20), we have \(1 + \alpha \left( {\delta - \beta e^{*} } \right) > 0\), \(\alpha \left( {1 - \gamma e^{*2} } \right) - p > 0\). Combining with Eq. (6), we obtain \(N_{A}^{*} > 0\).

From Eq. (5), we know \(N_{A}^{*} = \alpha N_{C}^{*} - p^{*}\). Because we have proofed \(N_{A}^{*} > 0\), it follows that \(\alpha N_{C}^{*} - p^{*} > 0\). Hence, \(N_{C}^{*} > \frac{{p^{*} }}{\alpha } > 0\).

Further, from Eq. (19), we have \(p^{*} < \alpha \left( {1 - \gamma e^{2} } \right)\). Then, we obtain \(\frac{{1 - \gamma e^{2} + p\left( {\delta - \beta e} \right)}}{{1 + \alpha \left( {\delta - \beta e} \right)}} < \frac{{1 - \gamma e^{2} + \alpha \left( {1 - \gamma e^{2} } \right)\left( {\delta - \beta e} \right)}}{{1 + \alpha \left( {\delta - \beta e} \right)}} = 1 - \gamma < 1\). Hence, from Eq. (7), we prove \(N_{C}^{*} < 1\).

$$ N_{A}^{*} = \frac{{2\alpha \left( {1 - \gamma e^{*2} } \right) - ke^{*2} }}{{4\left( {1 + \alpha \left( {\delta - \beta e^{*} } \right)} \right)}} $$
(21)

Because

$$ 4\left( {1 + \alpha \left( {\delta - \beta e^{*} } \right)} \right) - \left( {2\alpha \left( {1 - \gamma e^{*2} } \right) - ke^{*2} } \right) = 4\left( {1 + \alpha \left( {\delta - \beta e^{*} } \right)} \right) + ke^{*2} + 2\alpha \gamma e^{*2} - 2\alpha $$
(22)

where \(ke^{*2} + 2\alpha \gamma e^{*2} - 2\alpha = \frac{{8\left( {1 + \alpha \delta } \right)\left( {\left( {k + 2\alpha \gamma } \right)\left( {1 + \alpha \delta } \right) - \sqrt \Delta } \right) + 12\alpha^{3} \beta^{2} }}{{9\alpha^{2} \beta^{2} }}\). From Eq. (13), we can find \(\left( {k + 2\alpha \gamma } \right)\left( {1 + \alpha \delta } \right) > \sqrt \Delta\). Hence, \(ke^{*2} + 2\alpha \gamma e^{*2} - 2\alpha > 0\). And from Eq. (20), we have \(1 + \alpha \left( {\delta - \beta e^{*} } \right) > 0\). Therefore, \(4\left( {1 + \alpha \left( {\delta - \beta e^{*} } \right)} \right) + ke^{*2} + 2\alpha \gamma e^{*2} - 2\alpha > 0\). Based on Eq. (22), we can know \(4\left( {1 + \alpha \left( {\delta - \beta e^{*} } \right)} \right) > 2\alpha \left( {1 - \gamma e^{*2} } \right) - ke^{*2}\). Namely, \(\frac{{2\alpha \left( {1 - \gamma e^{*2} } \right) - ke^{*2} }}{{4\left( {1 + \alpha \left( {\delta - \beta e^{*} } \right)} \right)}} < 1\). From Eq. (21), we prove \(N_{A}^{*} < 1\).

Next, we will verify if the second order conditions hold for \(p^{*}\) and \(e^{*}\). The second-order derivatives of the platform’s profit function are as follows:

$$ \frac{{\partial^{2} \pi_{P} }}{{\partial p^{2} }} = - \frac{2}{{1 + \alpha \left( {\delta - \beta e} \right)}} $$
$$ \frac{{\partial^{2} \pi_{P} }}{{\partial e^{2} }} = - \frac{1}{{1 + \alpha \left( {\delta - \beta e} \right)}}\left( {\left( {\frac{{\alpha \left( {1 - \gamma e^{2} } \right)}}{2} - \frac{{ke^{2} }}{4}} \right)\left( {k + 2\alpha \gamma } \right) - 4k\alpha \gamma e^{2} } \right) $$
$$ \frac{{\partial^{2} \pi_{P} }}{\partial e\partial p} = \frac{{\left( {k - 2\alpha \gamma } \right)e}}{{1 + \alpha \left( {\delta - \beta e} \right)}} $$

From Eq. (20), we have \(1 + \alpha \left( {\delta - \beta e^{*} } \right) > 0\). Thus, \(\frac{{\partial^{2} \pi_{P} }}{{\partial p^{2} }} = - \frac{2}{{1 + \alpha \left( {\delta - \beta e} \right)}} < 0\). And

$$ \frac{{\partial^{2} \pi_{P} }}{{\partial p^{2} }}\frac{{\partial^{2} \pi_{P} }}{{\partial e^{2} }} - \left( {\frac{{\partial^{2} \pi_{P} }}{\partial e\partial p}} \right)^{2} = \frac{k + 2\alpha \gamma }{{\left( {1 + \alpha \left( {\delta - \beta e} \right)} \right)^{2} }}\left( {\alpha - \frac{{3\left( {k + 2\alpha \gamma } \right)e^{2} }}{2}} \right) $$
(23)

Since \(\alpha - \frac{{3\left( {k + 2\alpha \gamma } \right)e^{2} }}{2} = \frac{8\sqrt \Delta }{{3\alpha \beta^{2} \left( {k + 2\alpha \gamma } \right)}} > 0\), we have \(\frac{{\partial^{2} \pi_{P} }}{{\partial p^{2} }}\frac{{\partial^{2} \pi_{P} }}{{\partial e^{2} }} - \left( {\frac{{\partial^{2} \pi_{P} }}{\partial e\partial p}} \right)^{2} > 0\). As a result, the Hessian matrix is a negative definite matrix. And the profit function of the platform has the maxima on \(p^{*} = \frac{{\alpha \left( {1 - \gamma e^{*2} } \right)}}{2} + \frac{{ke^{*2} }}{4}\), \(e^{*} = \frac{{2\left( {k + 2\alpha \gamma } \right)\left( {1 + \alpha \delta } \right) - 2\sqrt \Delta }}{{3\alpha \beta \left( {k + 2\alpha \gamma } \right)}}\).□

Proof of Proposition 2

Because \(e^{*} = \frac{{2\left( {k + 2\alpha \gamma } \right)\left( {1 + \alpha \delta } \right) - 2\sqrt \Delta }}{{3\alpha \beta \left( {k + 2\alpha \gamma } \right)}}\), deriving the above expression with respect to \(\gamma\), we have \(\frac{{\partial e^{*} }}{\partial \gamma } = - \frac{{\alpha^{3} \beta }}{{\left( {k + 2\alpha \gamma } \right)\sqrt \Delta }}\). Since \(\alpha ,\beta ,k,\gamma\) are all positive, thus, \(\frac{{\partial e^{*} }}{\partial \gamma } < 0\).

Besides, \(\frac{{\partial p^{*} }}{\partial \gamma } = - \frac{{\alpha e^{*2} }}{2} - \frac{{\left( {2\alpha \gamma - k} \right)e^{*} }}{2}\frac{{\partial e^{*} }}{\partial \gamma }\). If \(\gamma < \frac{k}{2\alpha }\), it follows that \(2\alpha \gamma - k < 0\). In addition, \(\frac{{\partial e^{*} }}{\partial \gamma } < 0\), we obtain \(\frac{{\left( {2\alpha \gamma - k} \right)e^{*} }}{2}\frac{{\partial e^{*} }}{\partial \gamma } > 0\). Thus, \(- \frac{{\alpha e^{*2} }}{2} - \frac{{\left( {2\alpha \gamma - k} \right)e^{*} }}{2}\frac{{\partial e^{*} }}{\partial \gamma } < 0\). Namely, \(\frac{{\partial p^{*} }}{\partial \gamma } < 0\).□

Proof of Proposition 3

\(\frac{{\partial e^{*} }}{\partial \beta } = \frac{{2\left( {1 + \alpha \delta } \right)\left( {\left( {k + 2\alpha \gamma } \right)\left( {1 + \alpha \delta } \right) - \sqrt \Delta } \right)}}{{3\alpha \beta^{2} \sqrt \Delta }}\). From Eq. (13), we have \(\left( {k + 2\alpha \gamma } \right)\left( {1 + \alpha \delta } \right) - \sqrt \Delta > 0\). Therefore, \(\frac{{\partial e^{*} }}{\partial \beta } > 0\).

Besides, \(\frac{{\partial p^{*} }}{\partial \beta } = \frac{{e^{*} \left( {k - 2\alpha \gamma } \right)}}{2}\frac{{\partial e^{*} }}{\partial \beta }\). If \(\gamma < \frac{k}{2\alpha }\), we have \(\frac{{e^{*} \left( {k - 2\alpha \gamma } \right)}}{2} > 0\). Because \(\frac{{\partial e^{*} }}{\partial \beta } > 0\), we obtain \(\frac{{e^{*} \left( {k - 2\alpha \gamma } \right)}}{2}\frac{{\partial e^{*} }}{\partial \beta } > 0\). Finally, \(\frac{{\partial p^{*} }}{\partial \beta } > 0\). However, if \(\gamma \ge \frac{k}{2\alpha }\), we have \(\frac{{e^{*} \left( {k - 2\alpha \gamma } \right)}}{2} \le 0\). Because \(\frac{{\partial e^{*} }}{\partial \beta } > 0\), and \(\frac{{e^{*} \left( {k - 2\alpha \gamma } \right)}}{2}\frac{{\partial e^{*} }}{\partial \beta } \le 0\)., \(\frac{{\partial p^{*} }}{\partial \beta } \le 0\).□

Proof of Proposition 4

. By \(\frac{{\partial e^{*} }}{\partial \delta } = \frac{{2\left( {\sqrt \Delta - \left( {k + 2\alpha \gamma } \right)\left( {1 + \alpha \delta } \right)} \right)}}{3\beta \sqrt \Delta }\) and Eq. (13), we have \(\left( {k + 2\alpha \gamma } \right)\left( {1 + \alpha \delta } \right) - \sqrt \Delta > 0\). Therefore,\(\frac{{\partial e^{*} }}{\partial \delta } < 0\).

Besides, \(\frac{{\partial p^{*} }}{\partial \delta } = \frac{{e^{*} \left( {k - 2\alpha \gamma } \right)}}{2}\frac{{\partial e^{*} }}{\partial \delta }\). If \(\gamma < \frac{k}{2\alpha }\), we have \(\frac{{e^{*} \left( {k - 2\alpha \gamma } \right)}}{2} > 0\). Because \(\frac{{\partial e^{*} }}{\partial \delta } < 0\), it follows that \(\frac{{e^{*} \left( {k - 2\alpha \gamma } \right)}}{2}\frac{{\partial e^{*} }}{\partial \delta } < 0\), so \(\frac{{\partial p^{*} }}{\partial \delta } < 0\). However, if \(\gamma \ge \frac{k}{2\alpha }\), we have \(\frac{{e^{*} \left( {k - 2\alpha \gamma } \right)}}{2} \le 0\). Since \(\frac{{\partial e^{*} }}{\partial \delta } < 0\), we have \(\frac{{e^{*} \left( {k - 2\alpha \gamma } \right)}}{2}\frac{{\partial e^{*} }}{\partial \delta } \ge 0\), \(\frac{{\partial p^{*} }}{\partial \delta } \ge 0\).□

Proof of Proposition 5

\(\frac{{\partial e^{*} }}{\partial k} = - \frac{{\alpha^{2} \beta }}{{2\left( {k + 2\alpha \gamma } \right)\sqrt \Delta }}\). Because \(\alpha ,\beta ,k,\gamma\) are all positive, \(\frac{{\partial e^{*} }}{\partial k} < 0\).□

Proof of Proposition 6

. By \(\frac{{\partial e^{*} }}{\partial \alpha } = \frac{{2\left( {k + 2\alpha \gamma } \right)\left( {\left( {k + 2\alpha \gamma } \right)\left( {1 + \alpha \delta } \right) - \sqrt \Delta } \right) + \frac{{3k\alpha^{3} \beta^{2} }}{2}}}{{3\alpha^{2} \beta \left( {k + 2\alpha \gamma } \right)\sqrt \Delta }}\), and Eq. (13), we have \(\left( {k + 2\alpha \gamma } \right)\left( {1 + \alpha \delta } \right) - \sqrt \Delta > 0\). Thus, \(2\left( {k + 2\alpha \gamma } \right)\left( {\left( {k + 2\alpha \gamma } \right)\left( {1 + \alpha \delta } \right) - \sqrt \Delta } \right) > 0\). And because the denominator is positive, \(\frac{{\partial e^{*} }}{\partial \alpha } > 0\).□

Proof of Proposition 7

According to the Envelope Theorem, we have

$$ \frac{{\partial \pi_{P}^{*} }}{\partial \gamma } = \frac{{\partial \pi_{P} }}{\partial \gamma }|_{{p = p^{*} ,e = e^{*} }} = - \left( {p^{*} - \frac{{ke^{*2} }}{2}} \right)\frac{{\alpha e^{*2} }}{{1 + \alpha \left( {\delta - \beta e^{*} } \right)}} $$
$$ \frac{{\partial \pi_{P}^{*} }}{\partial \alpha } = \frac{{\partial \pi_{P} }}{\partial \alpha }|_{{p = p^{*} ,e = e^{*} }} = \left( {p^{*} - \frac{{ke^{*2} }}{2}} \right)\frac{{\alpha \left( {1 - \gamma e^{*2} } \right) - p^{*} + p^{*} \left( {1 + \alpha \left( {\delta - \beta e^{*} } \right)} \right)}}{{\alpha \left( {1 + \alpha \left( {\delta - \beta e^{*} } \right)} \right)^{2} }} $$
$$ \frac{{\partial \pi_{P}^{*} }}{\partial \beta } = \frac{{\partial \pi_{P} }}{\partial \beta }|_{{p = p^{*} ,e = e^{*} }} = \left( {p^{*} - \frac{{ke^{*2} }}{2}} \right)\frac{{\left( {\alpha \left( {1 - \gamma e^{*2} } \right) - p^{*} } \right)\alpha e^{*2} }}{{\left( {1 + \alpha \left( {\delta - \beta e^{*} } \right)} \right)^{2} }} $$
$$ \frac{{\partial \pi_{P}^{*} }}{\partial k} = \frac{{\partial \pi_{P} }}{\partial k}|_{{p = p^{*} ,e = e^{*} }} = - \frac{{e^{*2} }}{2}\frac{{\alpha \left( {1 - \gamma e^{*2} } \right) - p^{*} }}{{1 + \alpha \left( {\delta - \beta e^{*} } \right)}} $$
$$ \frac{{\partial \pi_{P}^{*} }}{\partial \delta } = \frac{{\partial \pi_{P} }}{\partial \delta }|_{{p = p^{*} ,e = e^{*} }} = - \left( {p^{*} - \frac{{ke^{*2} }}{2}} \right)\frac{{\left( {\alpha \left( {1 - \gamma e^{*2} } \right) - p^{*} } \right)\alpha }}{{\left( {1 + \alpha \left( {\delta - \beta e^{*} } \right)} \right)^{2} }} $$

From Eq. (19), it follows that \(p^{*} - \frac{{ke^{*2} }}{2} > 0\) and \(\alpha \left( {1 - \gamma e^{*2} } \right) - p^{*} > 0\). From Eq. (20), we have \(1 + \alpha \left( {\delta - \beta e^{*} } \right) > 0\). As a result, \(\frac{{\partial \pi_{P}^{*} }}{\partial \gamma } < 0\), \(\frac{{\partial \pi_{P}^{*} }}{\partial \alpha } > 0\), \(\frac{{\partial \pi_{P}^{*} }}{\partial \beta } > 0\), \(\frac{{\partial \pi_{P}^{*} }}{\partial k} < 0\), \(\frac{{\partial \pi_{P}^{*} }}{\partial \delta } < 0\).□

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, Y., Ge, Y. & Feng, Y. Pricing and personal data collection strategies of online platforms in the face of privacy concerns. Electron Commer Res 22, 539–559 (2022). https://doi.org/10.1007/s10660-020-09439-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10660-020-09439-8

Keywords

Navigation